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Abstract

We consider the Traveling Salesman Problem with
Neighborhoods (TSPN) in doubling metrics. The goal
is to find a shortest tour that visits each of a given
collection of subsets (regions or neighborhoods) in the
underlying metric space.

We give a randomized polynomial time approxima-
tion scheme (PTAS) when the regions are fat weakly
disjoint. This notion of regions was first defined when
a QPTAS was given for the problem in [SODA 2010:
Chan and Elbassioni]. We combine the techniques in
the previous work, together with the recent PTAS for
TSP [STOC 2012: Bartal, Gottlieb and Krauthgamer]
to achieve a PTAS for TSPN.

Moreover, more refined procedures are used to
improve the dependence of the running time on the
doubling dimension k from the previous exp[O(1)k

2

]
(even for just TSP) to exp[O(1)O(k log k)].

1 Introduction

We consider the Traveling Salesman Problem with
Neighborhoods (TSPN) in a metric space (V, d). An
instance of the problem is given by a collection W of
n subsets {P1, P2, . . . , Pn} in V . Each subset Pj ⊂ V
is known as a neighborhood or region. The objective is
to find a minimum length tour that visits at least one
point from each region.

This problem generalizes the well-known Traveling
Salesman Problem (TSP), for which there are poly-
nomial time approximation schemes (PTAS) for low-
dimensional Euclidean metrics [22, 3, 25]. For some
time, only a quasi-polynomial1 time approximation
scheme (QPTAS) is known for doubling metrics [27],
where a metric space has doubling dimension [4, 9, 18]
at most k, if any ball in the space can be covered by
at most 2k balls with half its radius. It was only recent
that Bartal et al. [6] gave a PTAS for TSP on doubling
metrics.
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1A non-negative function f(n) is quasi-polynomial in n if there

exists a constant c such that f(n) ≤ exp(O(logc n)).

The neighborhood version of the problem was first
introduced by Arkin and Hassin [2], who gave constant
approximations for the case when the regions are in
the plane and “well-behaved” (e.g., disks, parallel and
similar length segments, bounded ratio between the
largest and smallest diameters). The general version of
the problem was shown to have an inapproximability
threshold of Ω(log2−c n) for any c > 0 by Halperin
and Krauthgamer [19]. There is an upper bound of
O(logN log k log n)-approximation, using the results of
Garg et al. [15] and Fakcharoenphol et al. [14], where N
is the total number of points in V and k is the maximum
number of points in each region.
TSPN on The Euclidean Plane. As in the case
for TSP, the special case when (V, d) is a subset of
the Euclidean plane is considered to achieve better
approximation ratios for TSPN. However, even for
regions that are intersecting connected subsets, the
problem remains APX-hard [10, 26].

In order for the problem to admit (1 + ε) approxi-
mation, restrictions are placed on the regions; examples
include diameter similarity, fatness and disjointness. In-
tuitively, the fatness of a region measures the ratio be-
tween the smallest circumscribing radius and the largest
inscribing radius. For instance, a disk is fat, while a line
segment is not.

Different assumptions on the regions in the Eu-
clidean plane are considered, and the following approxi-
mation ratios are achieved: (i) O(log n) [20, 17], (ii) con-
stant ratio [24, 10, 13], (iii) (1 + ε)-ratio PTAS [12, 23].
TSPN on Doubling Metrics. Chan and Elbassioni [7]
considered (1 + ε)-approximation for TSPN on doubling
metrics. They combined the notions of diameter varia-
tion, fatness and disjointness for geometric spaces, and
defined for regions in general metrics the notion of α-
fat weak disjointness (Definition 2.1). Intuitively, the
regions are partitioned into ∆ groups, where regions in
each group should have similar diameters and each re-
gion designates a point within, such that these points
are far away from one another. The regions can other-
wise intersect arbitrarily, and need not even be convex
or connected, where such notions might be inapplicable



in the first place. More motivation and examples for fat
weakly disjoint regions are given in [7]. The assumption
that there is only a bounded number ∆ of types of re-
gion diameters is necessary though, as they also showed
that otherwise TSPN remains APX-hard for doubling
metrics.

Using the hierarchical decomposition and dynamic
programming techniques by Arora [3] and Talwar [27],
they gave a QPTAS for fat weakly disjoint neighbor-
hoods in doubling metrics. It should be noted that a
PTAS was not yet known even for TSP on doubling
metrics then.

In our previous unpublished manuscript [8], we
designed a PTAS for TSPN based on the techniques
in [7, 6]. For any parameter 0 < c < 1, our construction

gives a PTAS with running time n
1
c ·O(1)k · exp[(∆

ε )O(k) ·
O(α)2k2 · o(logc n)]. For the special case ∆ = α =
1, c = 1

2 , our bound is comparable to the running time

of nO(1)k · exp[( 1
ε )O(k) · O(1)k

2 ·
√

log n] for the PTAS
for TSP in [6]. Observe that the dependence on the

doubling dimension k is exp[O(1)k
2

]. In this paper, we
reduce the dependence on k to exp[O(1)O(k log k)]. Since
the dependence on k is doubly exponential, our new
scheme offers a significant improvement on the running
time in terms of k, when n� exp[O(1)O(k2)].
Main Result. We combine the techniques of the
dynamic program for TSPN [7] and the PTAS for
TSP [6] to give a PTAS for TSPN with improved running
time.

Theorem 1.1. Fix any 0 < c, ε < 1. There is a PTAS
that solves the following variation of TSPN. Suppose in
a metric space with doubling dimension at most k, there
are n regions that are partitioned into ∆ groups, each of
which is α-fat weakly disjoint. Then, for large enough
n (depending on c and ε), with constant probability, the
algorithm returns a TSPN tour of length at most (1+ε) ·
OPT in time n

1
c ·O(1)k · exp[∆2+c ·O(kαε )O(k) · o(logc n)].

Technical Challenges. Our PTAS for TSPN uses the
high level idea of the PTAS framework for TSP [6],
and in the core utilizes the dynamic program for TSPN
in [7]. However, there are a number of technical hurdles,
and we briefly explain why novel ideas are needed to
overcome them.
(1) Heuristic to detect critical instances. In [6], a
minimum spanning tree heuristic MST is computed on
the points in some ball B to estimate the weight of the
portion within B of some nearly optimal tour T . In our
previous attempt [8], we define a similar MST heuristic
on representatives of all regions W ′ intersecting B.
However, an optimal tour might choose to visit regions
W ′ (that partially intersect with B) using points that

are far away fromB, and this eventually leads to a factor
exp[O(1)O(k2)] in the running time. Instead, we use the
TSPN heuristic T (defined in Section 3), which itself is
an approximation for the shortest tour visiting regions
with small diameters intersecting B. In Lemma 4.2,
we show that the new TSPN heuristic T relates to an
optimal tour better than the previous MST heuristic.

Moreover, the heuristic T is applied in a bottom-up
fashion starting with lower height clusters. Hence, it
can be used to detect a lowest height critical instance,
in which there must be a large number of regions with
small diameters intersecting the ball in question.
(2) Resolving partially cut regions in sparse
instances in the recursion. In [6], loosely speaking,
after a critical instance is identified on a subset S1 of
points (by the MST heuristic), the sub-instance on S1

is still sparse enough and can be solved with a dynamic
program DP similar to [3, 27] in polynomial time to
give a partial tour, which is combined with the tour
solved recursively in the remaining instance. However,
when regions are involved, it is an important issue to
decide whether regions partially intersecting S1 should
be solved in the sparse instance, or considered in the
remaining instance. Since throughout the recursion, the
dynamic program DP might be called nΩ(1) times, we
cannot split cases to assign partially intersected regions
in each level of recursion, as even two cases per recursion

will lead to a running time of 2n
Ω(1)

. Surprisingly,
we can conservatively let the sparse instance handle
all regions that have non-empty intersections with S1.
Indeed, a very technical patching argument is made in
Lemma 5.2 to ensure that the recursion can be applied
as in [6].

In order to improve the final running time, we
also use a more careful procedure to remove a critical
instance. When a critical instance at distance scale si

is discovered, instead of just picking a random radius
O(si) to cut out a ball (as in [6, 8]), we first use the
TSPN heuristic T to determine a radius ρ with bounded
local growth before applying randomness to cut around
ρ. This idea of exploiting local growth is often applied
to problems on doubling metrics. For instance, in
the context of light spanners for doubling metrics [16,
Lemma 4.1], a certain radius is chosen similarly using
local growth rate.
(3) Bounding the number of ambiguous regions
in sparse DP. In the dynamic program for TSPN in [7],
the number H of ambiguous regions each cluster needs
to keep track of is poly-logarithmic in n. However,
there is a factor 2O(H) in the running time, which gives
a quasi-polynomial overhead in [7]. We improve the
analysis (Corollary 6.1 and Lemma 6.2) by using the
sparsity of the instance to obtain a better bound on



H with respect to both n and k. Hence, the dynamic
programs in [7] and [6] can be combined together to give
a PTAS with improved running time.

2 Preliminaries

We consider a finite metric space M = (V, d). (For
basic properties of metric spaces, we refer the reader
to standard texts [11, 21].) A ball B(x, ρ) is the set
{y ∈ V | d(x, y) ≤ ρ}. The diameter Diam(Z) of a
set Z is the maximum distance between points in Z.
A set Z of points is a ρ-packing, if any two distinct
points in Z are at a distance more than ρ away from
each other. Given a positive integer m, we denote
[m] := {0, 1, 2, . . . ,m− 1}. In this paper, we work with
metric spaces with doubling dimension [4, 18] at most
k; this means that for all x ∈ V , for all ρ > 0, every
ball B(x, 2ρ) can be covered by the union of at most 2k

balls of the form B(z, ρ), where z ∈ V . For convenience,
we sometimes round the doubling dimension up to the
nearest integer k.

Fact 2.1. (Packing in Doubling Metrics [18])
Suppose for some non-negative integer t, Z is a ρ-
packing contained in some ball of radius 2tρ in a metric
space with doubling dimension at most k. Then, |Z| ≤
2(t+1)k.

Problem Definition. An instance of the metric TSP
with neighborhoods (TSPN) is given by a metric space
M = (V, d) with doubling dimension at most k and a
collection of n neighborhoods or regions W := {Pj | j ∈
[n]}, where each Pj is a subset of V , and V = ∪jPj . The
objective is to find a minimum TSP tour that visits at
least one point from each region. As in [7], the regions
are partitioned into ∆ groups {Wl}l∈[∆], such that for
some α ≥ 1, each group Wl satisfies some α-fat weak
disjointness condition as follows.

Definition 2.1. (α-Fat Weakly Disjoint Re-
gions) [7] For α ≥ 1, a group Wl of regions are α-fat
weakly disjoint if for some ρ > 0 the following condi-
tions hold.

1. For each region P ∈ Wl, there exists some point
z(P ) ∈ P such that the set {z(P )}P∈Wl

is a ρ-
packing. We say that P has center z(P ) and the
regions in Wl have core radius ρ.

2. Every region P in Wl is contained in the ball
B(z(P ), αρ).

Lemma 2.1. (Lower Bound on Tour Length:
Corollary 3.2 in [7]) Suppose Wl is a group of re-
gions as in Definition 2.1 such that |Wl| > (8α)k. Then,
any tour that visits all regions in Wl must have length
at least 1

2(8α)k

∑
P∈Wl

Diam(P ).

Corollary 2.1. (Sum of Truncated Diameters)
Suppose T is a tour visiting all regions in W , which
consists of ∆ groups of α-fat weakly disjoint regions.
Then, for any real D > 0,

∑
P∈W min{Diam(P ), D} ≤

∆ · (8α)k ·max{2w(T ), D}.

Claim 2.1. (Number of Intersecting Regions
with Large Diameters) Suppose 0 < δ < 1 ≤ t
and let B be a ball with radius tsi. Then, the number of
regions with diameter at least δsi that intersect B is at
most ∆ ·O( tαδ )k.

Proof. Recall that the regions are partitioned into ∆
groups of α-fat weakly disjoint regions. We give the
upper bound for each group. Let D be the maximum
diameter of all the regions in some group that intersect
the ball B. We consider the case D ≥ δsi; otherwise,
the upper bound is trivially 0.

By the definition of α-fat weak disjointness, these
regions have centers that form a ρ-packing, where ρ ≥
D
α . Moreover, these centers lie in a ball with radius at
most tsi+D. Hence, by the packing property (Fact 2.1),
the number of regions in this group that intersect B is

at most O(α(tsi+D)
D )k ≤ O(αtδ )k.

Remark 2.1. (Assumptions on the Partition
{Wl}l∈[∆]) We assume the existence of the partition
{Wl}l∈[∆] of regions, such that each group is guaranteed
to be α-fat weakly disjoint. We assume that only the
parameter α and ∆ are given to us, and our algorithm
does not need to know how the regions are partitoned,
and within each group Wl, our algorithm does not need
to know the core radius or how the centers of the regions
are assigned in Definition 2.1.

We let OPT(S,W ) denote an optimal tour using
points in S that visits every region in W ; when the
context is clear, we also use OPT(S,W ) (or just OPT)
to denote the length of the tour.
Restricting the Tour inside B0. We assume that
there is a region P0 that contains only one point p0.
For finite metrics, we can have this assumption because
we can try each p0 in P0, and consider those TSPN
tours that pass through p0. We let R be the minimum
radius of a ball centered at p0 that intersects all regions.
Suppose OPT is the length of an optimal tour. Then,
it follows that 2R ≤ OPT ≤ 2nR. Hence, an optimal
tour must be contained in the ball B0 := B(p0, nR).
Therefore, without loss of generality, we only need to
consider the points in B0.

Remark 2.2. Since we consider a PTAS, we fix ε > 0,
and consider sufficiently large n such that 1

ε < n.
Suppose an optimal tour visits pj in each Pj. If we



replace each pj by (possibly another) point p′j ∈ Pj
such that d(pj , p

′
j) ≤ εR

2n , then we change the length
of the tour by at most εOPT. Hence, we can assume
that each region has radius of either 0 or at least εR

2n .
We can rescale distances such that the minimum inter-
point distance among all points is 1, and the maximum

distance is at most n2

ε < n3. By Fact 2.1, we can

assume that |V | ≤ nO(k). For simplicity, we often argue
that the tour returned by the algorithm has expected
length at most 1 + ε times the optimal length; by using
standard repetition argument, one can show this implies
that with constant probability, approximation ratio 1 + ε
can be obtained.

Given ρ > 0, recall that a ρ-net for a set U of points
is a subset S such that S is a ρ-packing, and every point
in U is within a distance of ρ from some point in S.
Hierarchical Nets. Fix c > 0. As in [6], we consider

some parameter s = (log n)
c
4k ≥ 4 (i.e., n ≥ 22Ω(k)

).
Set L := O(logs n) = O( k logn

c log logn ). A greedy algorithm
can construct NL−1 ⊆ · · · ⊆ N1 ⊆ N0 = V such that
for each i ∈ [L], Ni is an si-net for V , where we say
distance scale si is of height i. As in [6], we use the
randomized decomposition scheme defined in [5, 1].

Definition 2.2. (Single-Scale Decomposi-
tion [1]) At height i, an arbitrary ordering πi is
imposed on the net Ni. Each net-point u ∈ Ni cor-
responds to a cluster center and samples random hu
from a truncated exponential distribution Expi having

density function t 7→ χ
χ−1 ·

lnχ
si · e

− t lnχ

si for t ∈ [0, si],

where χ = O(1)k. Then, the cluster at u has random
radius ru := si + hu.

The clusters induced by Ni and the random radii
form a decomposition Πi, where a point p ∈ V belongs
to the cluster with center u ∈ Ni such that u is the first
point in πi to satisfy p ∈ B(u, ru). We say that the
partition Πi cuts a set P if P is not totally contained
within a single cluster.

The results in [1] imply that the probability that a

set P is cut by Πi is at most β·Diam(P )
si , where β = O(k).

Definition 2.3. (Hierarchical Decomposition)
Given a configuration of random radii for {Ni}i∈[L], de-
compositions {Πi}i∈[L] are induced as in Definiton 2.2.
At the top height L − 1, the whole space is partitioned
by ΠL−1 to form height-(L − 1) clusters. Inductively,
each cluster at height i+ 1 is partitioned by Πi to form
height-i clusters, until height 0 is reached. Observe that
a cluster has K := O(s)k child clusters.

Hence, a set P is cut at height i iff the set P is cut
by some partition Πj such that j ≥ i; this happens with

probability at most
∑
j≥i

β·Diam(P )
si = O(k)·Diam(P )

si .

Net-Respecting Tour. As defined in [6], a tour T is
net-respecting with respect to {Ni}i∈[L] and ε > 0 if for
every transition (x, y) in the tour, both x and y belong
to Ni, where si ≤ ε · d(x, y) < si+1. Given a subset
S ⊆ V and a set W of regions, let OPTnr(S,W ) be an
optimal net-respecting tour using points in S that visits
every region in W ; when the context is clear, we also
use OPTnr(S,W ) to denote the length of the tour.

It is shown in [6, Lemma 1.11] that net-points can
be inserted between every transition of a tour T to make
the tour net-respecting, while increasing the length by
only a factor of 1 +O(ε). Hence, we can assume that
the optimal TSPN tour is net-respecting, but observe
that the approximation algorithm needs not return a
net-respecting tour.
Portals. As in [3, 27, 6], each height-i cluster is
equipped with portals such that a tour is portal-
respecting if it enters and exits a cluster only through
its portals. As mentioned in [6], the portals of a cluster
need not be points of the cluster itself, but are just used
as entry or exit points. For a height-i cluster C, its por-
tals is the subset of net-points in Ni′ that cover C, where
i′ is the maximum index such that si

′ ≤ max{1, ε
4βL ·s

i}.
A transition (x, y) in a tour can be made portal-

respecting in the following way. Suppose height i is
the highest scale that separates the pair (x, y), and px
and py are the closest height-i portals in the clusters
containing x and y, respectively. Then, the transition
(x, y) is replaced by (i) a portal-respecting tour from
x to px found recursively, (ii) px to py, (iii) a portal-
respecting tour from py to y found recursively.

Fact 2.2. (Portal-Respecting Tour) Any tour T
can be converted to a portal-respecting tour (that visits
all the points in T ) whose expected length is at most 1+ε
times that of the original tour, where the randomness is
over the hierarchical decomposition

Since a height-i cluster has diameter O(si), by
Fact 2.1, the cluster has at most m := O(βLsε )k portals.
(m, r)-Light Tour. An (m, r)-light tour is a portal-
respecting tour that visits each cluster only through its
m portals, and crosses each cluster at most r times; a
tour crosses a cluster when it either enters or exits a
cluster.

A dynamic program can be used [27, 7] to find the
best (m, r)-light tour whose length is at most (1 + ε)
times the optimal with r = O(m), which leads to only
a QPTAS. The idea in [6] is to exploit some sparsity
conditions to reduce r in order to obtain a PTAS.

3 Overview of Method

We adopt the PTAS framework for TSP in [6], and apply
it to TSPN.



Dynamic Programming. We use a subroutine
DP(S,W ), which can be applied when the instance is
sparse according to some heuristic described below. The
subroutine is described in Section 6, and is a dynamic
program that returns a tour in S visiting all regions
W . Recall that k is an upper bound on the doubling
dimension.
Sparsity Heuristic. In order to estimate the local
sparsity, given a net-point u ∈ Ni at height i and
t > 0, we consider the heuristic T(i)(u, t), which is some
constant approximation (say, with ratio 1.000001) of
the length of the shortest net-respecting tour contained
within B(u, (t + δ) · si) that visits all regions with
diameter at most δ · si that intersect B(u, tsi), where
δ := ε

1000k . Observe that we only try to compute T(i)

after checking that the heuristic T(j) is small for all
j < i. Hence, as we shall see later, we can use DP to
estimate T(i).

Given a set S of points and a set W of regions,
we give a high level description of our main algorithm
ALG(V,W ) that returns a tour in V visiting all regions
in W .

1. Base Case. If |W | = n is smaller than some con-
stant threshold, solve the problem by brute force,

recalling that |V | ≤ O(n
2

ε )k (See Remark 2.2).
2. Sparse Instance. If for all i ∈ [L], for all u ∈ Ni,

T(i)(u, 4) is at most q0 · si (where the reason for

choosing q0 := ∆ ·O(k
2αs
ε )k is given in Lemma 5.2),

call the subroutine DP(V,W ) to return a tour, and
terminate.

3. Identify Critical Instance. Otherwise, let i be
the smallest height such that there exists u ∈ Ni
with critical T(i)(u, 4) > q0 · si; in this case, choose
u ∈ Ni such that T(i)(u, 4) is maximized.

4. Remove Critical Instance. Decompose (possi-
bly using randomness) W := W1 ∪ W2 such that
loosely speaking W1 are the regions around u at
distance scale si, and pick S1 ⊆ V to be some ball
around u with radius O(ksi) such that (S1,W1) is
“sparse” enough.

5. Call the subroutine T1 := DP(S1,W1 + {u}), and
solve T2 := ALG(V,W2 + {u}) recursively; combine
the tours T1 and T2 at the point u to return a tour.
In order to complete the description of the algo-

rithm and prove that it has the desired properties (ap-
proximation ratio and running time), we need to supply
the following details.
Define DP to handle “sparse” instance (V,W ). We
define a dynamic program in Section 4 that handles
sparse instances, and in particular, has the following
meta-property.
(MP1) If (S,W ) is “sparse” enough, then DP(S,W )
runs in polynomial time, and with high probability (say

at least 1− 1
2n ), returns a tour in S visiting all regions

in W whose length is at most (1 + ε) times OPT(S,W ).
The formal version is obtained by Lemma 4.1 and
Corollary 6.2.
Define decomposition procedure to remove crit-
ical instance. Suppose i is the smallest height such
that there exists T(i)(u, 4) > q0 · si, where u ∈ Ni
is chosen to maximize the heuristic. In Section 5, we
shall define a (deterministic) ball S1 centered at u with
radius O(ksi) and a (random) ball B ⊂ S1. Then,
we set W1 := {P ∩ S1 : P ∩ B 6= ∅, P ∈ W}, and
W2 := {P ∈ W : P ∩ B = ∅}; observe that if q0 > 10,
then |W1| ≥ 2. We shall prove that the decomposition
has the following meta-property.
(MP2) The above randomized procedure produces a
“sparse” enough instance (S1,W1 + {u}) such that
E[OPT(S1,W1 + {u})] ≤ 1

1−ε · (OPTnr(V,W ) −
E[OPTnr(V,W2 + {u})]), where expectation is over the
random radius of B. The formal version is obtained by
Corollary 4.1 and Lemma 5.2.

Proof of Theorem 1.1: We show how (MP1)
and (MP2) imply our main result.
Analysis of approximation ratio. We follow the
inductive proof as in [6] to show that with constant
probability (where the randomness comes from DP),
ALG(V,W ) returns a tour with expected length at
most 1+ε

1−ε ·OPT
nr(V,W ), where expectation is over the

randomness of decomposing critical instances in (MP2).
Observe that in ALG(V,W ), the subroutine DP is

called at most poly(n) times (either explicitly in the
recursion or estimating the heuristic T(i)). Hence,
with constant probability, all the tours returned by all
instances of DP have appropriate lengths in (MP1).

Suppose T1 and T2 are the tours returned by
DP(S1,W1 + {u}) and ALG(V,W2 + {u}), respec-
tively. By (MP1), T1 has length at most (1 + ε) ·
OPT(S1,W1 + {u}), while the induction hypothesis
states that E[w(T2)] ≤ 1+ε

1−ε · OPT
nr(V,W2 + {u}).

By (MP2), E[OPT(S1,W1 + {u})] ≤ 1
1−ε ·

(OPTnr(V,W )−E[OPTnr(V,W2 +{u})]). Hence, it fol-
lows that E[w(T1) + w(T2)] ≤ 1+ε

1−ε · OPT
nr(V,W ) =

(1 +O(ε)) · OPT(V,W ), achieving the desired ratio.
Analysis of running time. We see that the decompo-
sition procedure in (MP2) is carried out at most O(n)
times. Hence, the running time is dominated by the calls
to the dynamic program DP in (MP1). We shall show
the argument in [6] can be augmented with regions to
still achieve polynomial time. In the rest of the paper,
we shall prove formal versions of (MP1) and (MP2).



4 Sparse Heuristic T Gives Sparse Optimal
Tour

In this section, we give formal treatments for (MP1) in
Section 3. A tour T can be interpreted as a set of edges
with end-points in V ; given B ⊆ V , T |B is the set of
edges in T such that both end-points are in B.
Sparse Tour [6]. A tour T is q-sparse with respect to
{Ni}i∈[L], if for all i ∈ [L], for all u ∈ Ni, the weight
w(T |B(u,3si)) of the portion of tour T within the ball
B(u, 3si) is at most q · si. We use the previous result
in [6, Lemma 3.1] paraphrased as follows.

Lemma 4.1. (q-Sparsity Allows (m, r)-
Lightness [6]) Suppose a net-respecting T is q-sparse
with respect to {Ni}i∈[L]. Moreover, for each i ∈ [L], for
each u ∈ Ni, point u samples O(log |V |) = O(k log n)
independent random radii as in Definition 2.2. Then,
with constant probability, there exists a configuration
from the sampled radii that defines a hierarchical
decomposition, under which there exists an (m, r)-light
tour T ′ that visits all the points in T and has weight
w(T ′) ≤ (1 + ε) · w(T ), where m := O( sk logs n

ε )k and

r := O(1)k · q logs log n+O(kε )k +O( sε )
k.

We next show that the heuristic T(i)(u, t) can be
used to detect sparse tours visiting regions, which is
analogous to [6, Lemma 1.12(i)].

Lemma 4.2. (Heuristic T Gives Sparse Optimal
Tours) Suppose T is an optimal net respecting tour
for instance (S,W ). Then, for any height-i net point u
and integer t ≥ 1,

w(T |B(u,tsi)) ≤ T(i)(u, t+ 1) + ∆ ·O(kαtsε )k · si.

Proof. We denote B := B(u, tsi) and B′ := B(u, (t+1)·
si). The idea of the proof is to delete edges in T |B and
some other edges from T , and add edges corresponding
to the heuristic T(i)(u, t + 1) and additional edges to
construct another net-respecting tour T ′ that visit all
regions in W . Then, the optimality of T implies that
w(T ) ≤ w(T ′), and this gives an upper bound on
the weight of edges in T |B . Define l to be such that
sl ≤ ε

2 · s
i < sl+1

After we delete edges in T |B , the remaining edges in
T form path segments. Suppose x and y are end-points
of such a path segment remaining in T , where x, y ∈ B.
We need to add edges to make sure all regions are still
visited, and to patch end-points (such as x and y) of
path segments to form a tour again.

For forming a connected graph later, we first add a
minimum spanning tree F on Nl ∩B(u, (t+ 2)si). This
has cost O( stε )k · tsi.

To ensure all regions are still visited, we add edges
in the tour corresponding to the heuristic T(i)(u, t+ 1),

which is a tour within B(u, (t + 1 + δ)si) that visits
all regions with diameter at most δ · si that intersect
B′ = B(u, (t + 1) · si), where δ = Θ( εk ). By Claim 2.1,

at most O(kαtε )k regions from each group with diameter
at least δ · si can intersect B′. Hence, edges can be
added to makes sure these regions with large diameters
are connected to the nearest net-point in Nl with cost
∆ ·O(kαtε )k · si.

We next describe how to patch end-points x and y
of a remaining path segment P in T . Observe that x
and y are in B, and the next point after x on P escapes
B.
• Suppose the whole segment P lies in B′. Then, all

regions that P might visit have already been taken
care of. Hence, the segment P can be removed, and
no patching is needed.

• Suppose traversing along P starting from x, the
first node encountered that is outside B′ is x′′, and
the previous point x′ is still inside B′. We shall
remove edges from x to x′, and connect x′ to the
nearest net-point in Nl. We shall do a charging
argument such that this step does not incur any
net extra cost. For the case d(x, x′) ≤ ε

2 · s
i, we

have d(x′, x′′) ≥ si

2 , and hence, x′ is already in Nl,
because T is net-respecting. On the other hand, for
the case d(x, x′) > ε

2 · s
i, the edges removed from

x to x′ can be used to pay for the cost of the edge
connecting x′ to the net-point in Nl.
The same procedure is applied to the other end-
point y.
Observe that edges for the tour T(i)(u, t + 1) are

already net-respecting. Other edges can be made net-
respecting by incurring a small multiplicative factor
1 +O(ε).

Hence, we have w(T |B) ≤ T(i)(u, t + 1) + ∆ ·
O(kαtsε )k · si.

As we shall see later, we consider the heuristic with

t = 3, and set q0 := ∆ ·O(k
2αs
ε )k. We have the following

corollary.

Corollary 4.1. If ALG in Section 3 is run with

threshold q0 := ∆ · O(k
2αs
ε )k to determine critical in-

stances, then instances (S1,W1 + {u}) passed to DP
will have q-sparse net-respecting optimal tours, where
q := 2q0.

Lemma 4.1 and Corollary 4.1 ensure the existence
of an (m, r)-light TSPN tour that is (1+ε)-optimal. We
describe a dynamic program to compute such a tour in
Section 6, which also includes the analysis of running
time.



5 Identifying and Removing Critical Instances

As mentioned in the description of ALG(V,W ) defined
in Section 3, we need to describe exactly how a critical
instance is removed.
Removing Critical Instances. Recall that q0 :=

∆·O(k
2αs
ε )k, and i is the smallest height such that there

exists u ∈ Ni with heuristic T(i)(u, 4) > q0 · si, where
u is chosen to maximize the heuristic. Recall that the
heuristic T(i) itself is an estimate for a sparse instance
of TSPN with approximation ratio slightly larger than
1 (say, 1.000001). For simplicity, we use the notation
a . b to mean a ≤ 1.00001b.

Choose an integer λ ∈ {0, 1, . . . , k − 1} such that
T(i)(u, 6 + 2λ) ≤ 30k · T(i)(u, 4 + 2λ). We claim that
such a λmust exist. Otherwise, we have T(i)(u, 4+2k) >
(30k)k ·T(i)(u, 4). Suppose N is the set of net-points in
Ni∩B(u, (5+2k)si). Then, a tour visiting all the regions
with diameter at most δ ·si intersecting B(u, 4+2k) can
be formed from the tours corresponding to T (i)(v, 4)
over v ∈ N and a minimum spanning tree on N . This
has cost at most (4(5 + 2k))k · (T(i)(u, 4) + (5 + 2k)si) <
1
10 · (30k)k · T(i)(u, 4), from the choice of u and q0.

Define S1 := B(u, (5 + 2λ)si). Sample h ∈ [0, 1
2 ]

uniformly at random (as opposed to using distribution
Expi as in Definition 2.2); let B := B(u, (4 + 2λ+h)si).

We set W1 := {P ∩ S1 : P ∩ B 6= ∅, P ∈ W}, and
W2 := {P ∈W : P ∩B = ∅}. Recall that (S1,W1 +{u})
is passed to DP, while (V,W2+{u}) is solved recursively
by ALG.

Lemma 5.1. (Critical Instance Gives a Lower
Bound on Tour Length) Suppose T1 is a tour
that visits all regions in W1 and u. Then, q0 · si <
T(i)(u, 4) . T(i)(u, 4 + 2λ) . w(T1).

Proof. The first strict inequality follows from the con-
struction that the instance is critical. The next two ap-
proximate inequalities can be proved in the same man-
ner. Both are in the form T (i)(u, r) . w(T̂ ).

In both cases, the tour T̂ visits all regions with
diameter at most δ · si that intersect B(u, rsi). Hence,
by shortcutting and using the triangle inequality and
converting the shortcutting edges net-respecting, we can
produce a tour T (with weight w(T ) ≤ (1+O(ε))·w(T̂ ))
that is inB(u, (r+δ)si) and visits all the regions that are
also supposed to be visited by the tour corresponding
to T(i)(u, r). However, since T(i)(u, r) is only an
approximation to some corresponding optimal tour, we
have T(i)(u, r) ≤ 1.000001w(T ) . w(T̂ ), as required.

The following result is the formal version of (MP2)
in Section 3; it is an analogue of [6, Lemma 3.3], and
turns out to be the most technical part to adapt the
argument for TSPN.

Lemma 5.2. (Removing Critical Instances) Sup-
pose S1, W1 and W2 are as defined above, and T is
an optimal net-respecting tour in V visiting regions in

W . We set q0 := ∆ · O(k
2αs
ε )k. Then, for each ran-

dom h ∈ [0, 1
2 ], there exist tours T1 and T2 such that the

following holds.
1. Tour T1 is in S1 and visits all regions in W1 and

u.
2. Tour T2 is net-respecting and visits all regions in

W2 and u.
3. E[w(T1)] ≤ 1

1−ε · (w(T ) − E[w(T2)]), where the

expectation is over random h ∈ [0, 1
2 ].

Proof. Recall δ = ε
1000k , and let η := εδ. Let l be

the largest height such that sl ≤ max{1, ηsi}, and
ρ := 4 + 2λ.

Then, S1 := B(u, (ρ+1)si) andB := B(u, (ρ+h)si),
where h is sampled from [0, 1

2 ] uniformly at random. We
also write S0 := B(u, ρsi) ⊂ B ⊂ S1.

Given some h ∈ [0, 1
2 ], we shall construct T1 and

T2 using edges in T and adding extra edges. In
the construction, we ensure that (1) each tour visits
all the regions that it is supposed to visit, (2) the
edges added form a connected component such that
the corresponding tour can be formed (by possibly
shortcutting edges).

In the cost analysis, some edges are charged to T
once. Typically, these edges are path segments in T ,
and the intermediate nodes have degree 2. When a tour
is being formed finally, it is important that these edges
will only be used once. As mentioned above, during the
construction, some edges are added to make a connected
component. When a tour is formed, these edges could be
used a multiple number of times (say, at most 10 times),
whose cost is charged to ε · w(T1) via Lemma 5.1.

We next describe the construction in stages, and
state the cost involved in each stage.

Ensuring Connectivity. Define N := Nl ∩ S1

to be the net-points inside S1. For each of T1 and T2,
we add a minimum spanning tree F on N , which has
cost O(ρsη )k · ρsi. Since u ∈ N , both T1 and T2 visit
u. We remark that as we add edges in the construction,
we make sure that only nodes in N or nodes connected
to N (with edges of length at most ηsi) can have odd
degrees. Hence, to form each of the tours T1 and T2,
the standard technique of considering Euler tour on the
tree F will incur a cost that is a constant factor (say,
at most 10 times) of w(F ). By the choice of q0 and
Lemma 5.1, this will account for at most ε

4 · w(T1).
We partition the edges in T into three sets: (i) Ein:

edges totally within B, (ii) Ecr: edges crossing B, (iii)
Eout: edges totally outside B.
Ensuring Regions Are Visited: Part I. We add



edges in Ein to T1 and edges in Eout to T2. Hence, we
have ensured that T2 will visit all the regions that do
not intersect B. However, Ein might not be enough to
visit all regions that intersect B. We will take care of
this in Part II. For the time being, we describe how the
end-points of edges in Ecr are connected to the spanning
tree F in each of T1 and T2.

Suppose e = {x, x′} ∈ Ecr such that x ∈ B and
x′ 6∈ B. If w(e) ≥ δsi, then both x and x′ are in N
because T is net-respecting; in this case, we add e to
T2 (by extending the path segment in T2), and the end-
point x is N , which is already spanned by the tree F .
Observe that edges in T (whose cost is charged to w(T ))
added to T2 are already net-respecting, and other edges
added to T2 can be made net-respecting by increasing a
small factor that can still be charged to ε · w(T1).

If w(e) < δsi, then we add the edge e to T1. We
remark that at this point, in our charging scheme, the
part of the cost charged exactly once to w(T ) has been
used, and any further cost will be charged to ε · w(T1).
Next, we connect x′ to the closest net-point in N , which
incurs a cost of at most ηsi. Observe that we need to
charge this to ε·w(T1) somehow. We use the randomness
due to h, and observe that this cost is charged to e only
if the edge e is cut by B, which happens with probability

at most 2w(e)
si . Moreover, e can be charged with non-

zero probability only if e ∈ T |S1
. Hence, the expected

cost due to this part is C1 := 2η · w(T |S1
).

Ensuring Regions Are Visited: Part II. Observe
that T1 is supposed to visit all regions that intersect B.
However, T might visit such a region outside B. We
next add edges to make sure such regions that might be
missed by Ein are visited by T1.

By Claim 2.1, at most ∆ · O(ραδ )k regions with
diameter at least δsi can intersect B. Hence, the cost
to connect each one of them to the closest net-point
in N is at most ηsi. Therefore, by the choice of q0 and
Lemma 5.1, the cost of connecting them to N is at most
ε
4 · w(T1).

We next consider the regions with diameter at most
δsi that intersect B. Define B1 := B(u, (ρ + h + δ)si)
and B2 := B(u, (ρ + h + 3δ)si). Hence, we have
S0 ⊂ B ⊂ B1 ⊂ B2 ⊂ S1. We define the annulus
A := B1\B, and include all path segments in T |A to T1.
Observe that we need to include even the trivial path
segments consisting of single nodes. At this point, we
have ensured that T1 visits all regions that intersect B.

We next describe how the end-points of the path
segments in T |A are connected. Suppose x′ is an end-
point of such a path segment. We try to extend the path
segment along the tour T , and consider the following
cases.
(i) The next point x is in B. If d(x, x′) < δsi, then

the edge {x, x′} has already been added to T1 in
Part I; otherwise, by the net-respecting property of
T , x is a point in N .

(ii) The next point x is not in B, i.e., x /∈ B1. Here,
we start from p = x′, and try to extend the path
segment along the tour T that goes outside B1.
Whenever we have p ∈ B2 and the next hop {p, p′}
has distance at least δsi, then we have encountered
a net-point p in N , because T is net-respecting.
Otherwise, the tour either returns to the annulus
A or exits the ball B2. If the former happens first,
then this tour segment is merged with the next one
in T |A; if the latter happens first, suppose x′′ is the
last node in B2 before the tour leaves B2.

(iii) If d(x′, x′′) ≤ δsi, then the jump from x′′ to outside
B2 has distance at least δsi, which means that x′′

is in N . Otherwise, if d(x′, x′′) > δsi, we shall use
the edges from x′ to x′′ along T to pay for the cost
of connecting x′ to the nearest point in N .
Hence, to summarize, the cost of taking care of the

regions with diameter at most δsi intersecting B can
be charged to the edges of T that are totally in the
annulus A2 := B2 \ B, whose width is 3δ. Because of
the randomness of h, for any edge e regardless of its
length, the probability that e lies totally in A2 is at
most 10δ. On the other hand, an edge can be in A2

with non-zero probability only if e ∈ T |S1 . Hence, the
expected cost is at most C2 := 10δ · w(T |S1).
Analyzing the cost E[w(T1) + w(T2)]. In the de-
scription above, we state that the expected cost can be
charged to w(T ) or ε·w(T1). The charging is straightfor-
ward in most cases, but we elaborate how the expected
cost C1 + C2 is charged to ε · w(T1).

Observe that C2 dominates C1, and w(T |S1) ≤
T(i)(u, ρ + 2) + ∆ · O(kαρsε )k · si, where the inequality
follows from Lemma 4.2. It is sufficient to analyze
T(i)(u, ρ+ 2) + ∆ ·O(kαρsε )k · si.

By the choice of λ, we have T(i)(u, ρ + 2) =
T(i)(u, 6+2λ) ≤ 30k ·T(i)(u, 4+2λ) . 30k ·w(T1), where
the last approximate inequality follows from Lemma 5.1.
Therefore, by the choice of q0, we have w(T |S1

) ≤
20k ·w(T1). Hence, we have C1 +C2 ≤ 20δ ·w(T |S1

) ≤
ε
4 · w(T1).

Hence, in conclusion, the following inequality holds
with probability 1: E[w(T1)+w(T2)] ≤ w(T )+ε ·w(T1).
Taking expectation gives the required result.

6 Dynamic Program for TSPN

In Section 4, we see that the heuristic T(i)(u, t) can
ensure that the instance (S,W ) received by DP defined
in Section 3 has a sparse optimal tour, which by
Lemma 4.1 implies the existence of an (m, r)-light
(1+ε)-optimal tour for appropriate values ofm and r. In



this section, we describe details of the dynamic program
DP(S,W ) that finds such a tour in S visiting all regions
in W . The dynamic program is a combination of the
ones in [7] and [6], which are themselves extensions of
the ones in [3, 27]. We first review some properties for
TSPN as in [7].
Common and Rare Groups. Recall that the set W
of regions are grouped into sets {Wl}l∈[∆]. We say a

group Wl is common if |Wl| > (8α)k, and otherwise
is rare. Let Wc := ∪l:|Wl|>(8α)kWl be the regions
in common groups, and let Wr := W \ Wc be those
in rare groups. By Lemma 2.1,

∑
P∈Wc

Diam(P ) ≤
2∆ · (8α)kOPT, and observe that |Wr| ≤ ∆ · (8α)k.
Configuration of Random Radii. In Lemma 4.1, we
see a procedure that samples O(k log n) random radii
for each net-point at each height. By a configuration
of random radii, we mean picking some radius for each
net-point at each height. Recall that a configuration
of random radii induces a hierarchical decomposition in
Definition 2.3.

Given a hierarchical decomposition, the idea of
anchor points and potential sites are used in [7] to
give an efficient way to keep track of which clusters
are responsible for which regions. Since later we shall
consider different configurations of random radii, we
give an alternative description here. Let 0 < γ < 1 be
some parameter associated with the detour made when
a region is visited via an anchor point.
Anchor Points for Making Detours for Common
Regions Wc. Consider some tour T that visits all
regions in W . Given a hierarchical decomposition
induced by a configuration of random radii, we show
how anchor points are assigned to a region P in a
common group. Moreover, we describe the detour made
to T in each case.

Suppose that region P is first divided at height-i,
i.e., it is totally contained in some height-(i+1) cluster.

1. Suppose Diam(P ) ≤ γsi. Then, we pick an
arbitrary point p ∈ P and replace the region P
with the singleton {p}; we emphasize that in this
case p is NOT an anchor point for the region P .
Observe that visiting the region via p will cost a
detour of length at most 2Diam(P ).

2. Suppose j is the largest height such that sj ≤
max{1, γsi}. For each height-j cluster Cu (center-
ing at some u ∈ Ni) that intersects region P , assign
u as an anchor point from cluster Cu for region P .
We say that u is the potential site for the cluster Cu.
Observe that u might not be a point in Cu; when
the potential site u is activated, point u acts like a
special portal for the cluster Cu to visit regions as
follows. If the tour T visits a point p in Cu, then a
detour can be made to visit the activated potential

site u, and then to a point in P closest to u, after
which we backtrack to p to finish the detour; since
the cluster Cu has radius at most 2sj , this detour
has length at most 8sj ≤ 8γsi.
Note that we do not know which point in the region

the optimal tour would visit, but we can ensure that
the correct point would have an anchor point within a
distance of 2γsi.

The following lemma gives a slightly better analysis
than [7, Lemma 3.3]. This simple improvement later
removes the dependence of γ on L = O(logs n), which
ensures that the number of regions each cluster needs
to keep track of is independent of n.

Lemma 6.1. (Approximate Point Location for
Divided Regions) Suppose a hierarchical partition is
sampled as in Definition 2.3. Suppose a detour is
made to visit a common region P as above. Then, the
expected increase in the length of the tour is at most
O(βγ logs

1
γ ) · Diam(P ).

Proof. First, observe that the probability that a region
P with D := Diam(P ) is first divided at the height-i is
at most min{1, O(β) · Dsi }, as stated in Definition 2.2.
We consider different cases for i.

1. Case si ≥ D
γ . We have D ≤ γsi, and so P is

replaced by a singleton, and the detour has length
at most 2D. Suppose l is the smallest height such
that sl ≥ D

γ . Then, summation over i ≥ l gives

contribution
∑
i≥lO(β)· Dsi ·2D ≤ O(β)·D

sl
·O(D) ≤

O(βγ) ·D.
2. Case D ≤ si < D

γ . There are logs
1
γ such i’s, each

of which gives contribution at most O(β) · Dsi ·γs
i =

O(βγ) · D. Summation over i in this range gives
contribution O(βγ logs

1
γ ) ·D.

3. Case si < D. In this case, the probability of P cut
at height-i is at most 1; and the sum of contribution
over such i’s is at most O(γ) ·D.
Hence, the expected increase in length after the

detour is at most O(βγ logs
1
γ ) ·Diam(P ), as required.

Combining Lemma 2.1 and Lemma 6.1, we show
that γ can be chosen such that the detour will cause
the tour to increase by only ε fraction of the optimal
tour.

Corollary 6.1. (Low Cost Detours) Suppose a
hierarchical decomposition is sampled as in Defini-
tion 2.3, and the portal assignment procedure is carried
out to make detour for each common region as described
above. Then, the expected increase in the tour length is
at most ∆ · (8α)k ·O(βγ logs

1
γ ) ·OPT, where β = O(k).

In particular, we can choose 1
γ = ∆β·O(α)k

ε log ∆β·O(α)k

ε



(independent of n) such that this expected increase is at
most ε · OPT.

Ambiguous Regions for a Cluster. Recall that, ul-
timately, we want to limit the number of regions that
intersect a cluster for which the dynamic program has
to explicitly consider. Given a cluster C at height-i, its
ambiguous regions are those regions P partially inter-
secting C that satisfy one of the following properties.

1. The region P is in Wr, i.e., it is in a rare group;
observe that no anchor point is assigned for regions
in a rare group.

2. The cluster C or any of its descendant clusters
contain potential sites that can be anchor points
for the region P .
According to [7, Lemma 3.5], the number of am-

biguous regions a cluster needs to consider is ∆ ·O(αγ )k.

However, since we have 1
γ = Ω(1)k, this could lead to

a factor of 22Θ(k2)

in the final running time. Here, we
improve the upper bound on the number of ambiguous
regions using the sparsity of the heuristic.

Lemma 6.2. (Number of Ambiguous Regions)
Suppose in an instance for all but the top height i, for all
u ∈ Ni, T(i)(u, 4) ≤ q0 ·si. Then, the number of ambigu-
ous regions for any cluster is at most H := ∆·O(αε )k · q0γ .

Proof. Consider a height-i cluster C, whose center is u ∈
Ni and diameter is O(si). The number of ambiguous
regions in rare groups is at most ∆ · O(α)k. We next
focus on the common groups.

If some region P has diameter at most γsi, then P
cannot be ambiguous, because in the approximate point
location procedure, an arbitrary point p ∈ P is picked
to replace P .

Therefore, it suffices to bound the number of am-
biguous regions of diameter at least γsi. Observe that,
by α-fat weakly disjointness (Claim 2.1), the number of
regions of diameter at least εsi is at most ∆ ·O(αε )k.

Hence, it remains to bound the number of ambigu-
ous regions of diameter in [γsi, εsi] that intersect cluster
C. Define W to be the set of these regions. Observe that
the regions in W are totally contained in B(u, 3si).

By Corollary 2.1,
∑
P∈W diam(P ) ≤ ∆ · O(α)k ·

T(i)(u, 4) ≤ ∆ · O(α)k · q0s
i. Hence, it follows that

|W | ≤
∑
P∈W diam(P )

γsi ≤ ∆ ·O(αε )k · q0γ .
Combining the above cases gives the required result.

6.1 Description of Dynamic Program for TSPN
Our dynamic program DP is a combination of the dy-
namic programs in [7] and [6]. In [6], the number of ran-
dom radii considered by each net-point at each height is

O(k log n). To avoid considering an exponential number
of configurations, doubling dimension is used to exploit
the locality of the hierarchical decomposition. We first
describe the information needed to identify each cluster
at each height.
Information to Identify a Cluster. Each cluster is
identified by the following information.

1. Height i and cluster center u ∈ Ni. This has
L·O(nk) combinations, recalling that |Ni| ≤ O(nk).

2. For each j ≥ i, and v ∈ Nj such that d(u, v) ≤
O(sj), the random radius chosen by (v, j). Observe
that the space around B(u,O(si)) can be cut by
net-points in the same or higher heights that are
nearby with respect to their distance scales. As
argued in [6], the number of configurations that

are relevant to (u, i) is at most O(k log n)L·O(1)k =

n
1
c ·O(1)k , where L = O(logs n) and s = (log n)

c
4k ,

where c > 0 is fixed in advance.
3. For each j > i, which cluster at height j (specified

by the cluster center vj ∈ Nj) contains the current

cluster at height i. This has O(1)L = nO( k
c log logn )

combinations.
Therefore, the whole dynamic program considers

at most n
1
c ·O(1)k clusters. As in [3, 27], the dynamic

program looks for the best (m, r)-light tour, where the
values of m and r are determined by Lemmas 4.1,
Corollary 4.1 and Lemma 5.2 as follows:

m := O( sk logs n
ε )k and r := ∆ · O(k

2α
ε )k · sk ·

logs log n.
As in the case [7], we look for a tour that visits

every region. We describe the attributes used to index
each entry of a cluster.
Attributes of a Cluster Entry. As in [7], each cluster
C has a number of entries, each of which is indexed by
the following attributes. Suppose C is at height i and
has center u ∈ Ni.

1. A collection I of portal entry/exit points. Recall
that (m, r)-lightness implies that |I| ≤ r, and there
are at most m2r combinations.

2. A bit vector of length equal to the number of
ambiguous regions that cluster C has. Each such
bit indicates whether the cluster is responsible for
the corresponding ambiguous region.
Observe that the information used to identify the
cluster C specifies how the space in B(u,O(si)) is
cut at height j, for j ≥ i. Hence, it is sufficient to
determine which are the ambiguous regions for C.
By Lemma 6.2, the number of ambiguous regions
for a cluster is at most
H := ∆ ·O(αε )k · q0γ = ∆

γ ·O(kαε )2k ·sk, and so there

are at most 2H combinations.
3. A bit indicating whether the potential site of cluster



C is activated.
Filling Out Dynamic Program Entries. The
dynamic program entries are computed bottom up in
the fashion described in [7, Section 4]. Observe that the
information identifying a cluster contains the relevant
configuration of random radii that can determine the
cluster’s parent and siblings. The following result can be
derived from [7, Theorem 4.1] and compares the running
time of the dynamic program for TSPN with that for
TSP.

Theorem 6.1. (Comparing Running Times) With
constant probability, the dynamic program gives an
(m, r)-light tour for TSPN of length at most (1 + ε)OPT
in time TIME(TSP) · 2O(HK), where TIME(TSP) is the
time for approximating TSP with dynamic program in
Bartal et al. [6], H is an upper bound on the number
of ambiguous regions for each cluster, and K = O(s)k

is an upper bound on the number of children for each
cluster.

Corollary 6.2. (Running Time of DP(V,W )) Fix
any c > 0, and suppose an instance (S1,W1) with
large enough n = |W1| is passed to DP in Section 3.
Then, with high probability, the dynamic program DP
can return a TSPN tour visiting all regions in W1 with
length at most (1 + ε) · OPT(S1,W1) in time

n
1
c ·O(1)k · exp[∆2+c ·O(kαε )O(k) · o(logc n)].

Proof. Repeating the algorithm in Theorem 6.1 for
O(log n) times, we can convert constant success proba-
bility to high probability 1 − 1

poly(n) . We show our dy-

namic program runs in polynomial time in n, and give
the dependence of the running time on the parameters.

Recall that the dynamic program for TSP [6] finds
the optimal (m, r)-light tour in hierarchical decomposi-
tions where each cluster has at most K children. The
number of clusters (induced by all relevant configura-

tions of radii) from all heights is at most n
1
c ·O(1)k , and

the time to process all entries of a cluster is (mKr)2Kr.

Recall that K = O(s)k, m := O( sk logs n
ε )k =

O(k log2 n
ε )k, and r := ∆ ·O(k

2α
ε )k · sk · logs log n.

For any c > 0, for sufficiently large n, we can set
s := (log n)

c
4k ≥ 4, and the term s2k = (log n)

c
2 can

be used to absorb sub-logarithmic terms O(log log n).
Hence, ln(mKr)2Kr = ∆ ·O(kαε )O(k) · o(logc n).

Finally, H := ∆
γ · O(kαε )2k · sk and 1

γ :=
∆β·O(α)k

ε log ∆β·O(α)k

ε . Hence, HK = ∆2+c ·O(kαε )O(k) ·
o(logc n).

Therefore, the total running time is

n
1
c ·O(1)k · (mKr)2Kr · 2O(HK)

= n
1
c ·O(1)k · exp[∆2+c ·O(kαε )O(k) · o(logc n)].
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