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Abstract

We consider the general (J,K)-secretary problem,
where n totally ordered items arrive in a random or-
der. An algorithm observes the relative merits of ar-
riving items and is allowed to make J selections. The
objective is to maximize the expected number of items
selected among the K best items.

Buchbinder, Jain and Singh proposed a finite linear
program (LP) that completely characterizes the prob-
lem, but it is difficult to analyze the asymptotic behav-
ior of its optimal solution as n tends to infinity. Instead,
we prove a formal connection between the finite model
and an infinite model, where there are a countably in-
finite number of items, each of which has arrival time
drawn independently and uniformly from [0, 1].

The finite LP extends to a continuous LP, whose
complementary slackness conditions reveal an optimal
algorithm which involves JK thresholds that play a
similar role as the 1

e -threshold in the optimal classical
secretary algorithm. In particular, for the case K =
1, the J optimal thresholds have a nice “rational
description”. Our continuous LP analysis gives a very
clear perspective on the problem, and the new insights
inspire us to solve two related problems.

1. We settle the open problem whether algorithms
based only on relative merits can achieve optimal
ratio for matroid secretary problems. We show
that, for online 2-item auction with random ar-
riving bids (the K-uniform matroid problem with
K = 2), an algorithm making decisions based only
on relative merits cannot achieve the optimal ratio.
This is in contrast with the folklore that, for online
1-item auction, no algorithm can have performance
ratio strictly larger than 1

e , which is achievable by
an algorithm that considers only relative merits.

2. We give a general transformation technique that
takes any monotone algorithm (such as threshold
algorithms) for the (K,K)-secretary problem, and
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constructs an algorithm for online bipartite K-
matching with random arrival order that has at
least the same performance guarantee.

1 Introduction

In computer science, guarantees are often expressed in
terms of big-O notation, but occasionally the optimal
performance ratio for some problems can be narrowed
down to the precise number. One such example is
the classical secretary problem [18, 6, 8, 7], which
has been popularized in the 1950s, and since then
various versions and solutions for the problem have been
studied. Buchbinder, Jain and Singh [4] considered the
following generalized secretary problem.
(J,K)-Secretary Problem. There are n items (whose
merits are given by a total ordering) that arrive in a
random order, i.e., the arrival order is picked uniformly
at random among all permutations of the n items. An
algorithm (which knows the parameter n) has J quotas
for selecting (or choosing) items. It can observe the
relative merits of items arrived so far, and must decide
irrevocably if an item is selected when it arrives. The
objective is to maximize the expected payoff, which
is the number of items selected among the best K
items, where expectation is over the random arrival
permutation. The performance ratio is the expected
payoff divided by min{J,K}. Observe that no adversary
is involved in the problem, and hence randomization is
unnecessary to achieve optimality, although randomized
algorithms can often help the analysis, in which case the
performance ratio is an expectation over randomness
from both the algorithm and the arrival order.

Previous Approaches. The simple (1, 1)-case is the clas-
sical secretary problem, where both the expected pay-
off and the performance ratio is the probability that
the best item is selected. Buchbinder et al. [4] gave a
linear programming formulation LPn(J,K) that com-
pletely characterizes the generalized secretary problem
in the sense that the optimal performance ratio can be
inferred from the optimal value of the LP, which gives



the optimal expected payoff, and every feasible solution
gives a randomized algorithm with the same objective
value. Indeed, for the (1, 1)-case, they showed that the
optimal solution corresponds to the well-known algo-
rithm that discards the first n

e items1, and after that
selects the first arriving item that is the best among
all already observed items. It is well-known that the
asymptotic ratio approaches to 1

e from above as n tends
to infinity (indeed for finite n, the optimal ratio must
be rational). For the general (J,K)-case, it is tedious
to analyze the optimal LP solution and its asymptotic
behavior. Moreover, the authors in [4] did not analyze
the structure of the optimal LP for the general case to
derive a “simple” algorithm. They could show that the
(2, 1)-case has optimal asymptotic ratio 1

e + 1
e1.5 that

is achievable by a similar algorithm involving the n
e -th

and n
e1.5 -th items. However, for the (1, 2)-case, the op-

timal LP solution is already very complicated, and they
only claimed a ratio of 0.572284, which was shown by
Gilbert [9] and Gusein-Zade [10] (and also confirmed by
our results) to be actually 0.573567.
Continuous Model. Bruss introduced the continuous
model [3], in which there is still a totally ordered
set of n items, but each item picks an arrival time
independently and uniformly at random from [0, 1].
Any algorithm in the previous step model can still
work in the continuous model by simply ignoring the
arrival times, whereas any algorithm in the continuous
model can be implemented as a randomized algorithm
in the finite step model by first artificially generating
n independent time-stamps uniformly at random from
[0, 1], and giving the i-th arriving item the i-th smallest
time-stamp. Although the two models are equivalent
in terms of performance ratio, the continuous model
is a step towards developing a convenient tool for
analyzing the asymptotic ratio, because algorithms in
the continuous model might not need to know n in
advance, and can rely on the current time to infer
what fraction of items have already been sampled. For
instance, for the (1, 1)-case, an asymptotically optimal
algorithm selects the first arriving item after time 1

e that
is the best so far.
Infinite Model. Immorlica, Kleinberg and Mah-
dian [11] extended the continuous model to the infinite
model, in which the totally ordered set of items is the set
of positive integers, with a smaller integer having better
merit. Each item still picks an arrival time uniformly at
random from [0, 1], and an algorithm again can only ob-
serve the relative merits of arriving items. The authors
considered multiple employers competing for the best

1From experiments, depending on n, the optimal threshold n
e
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⌊
n
e

⌋
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⌈
n
e

⌉
.

item under the infinite model, but there was no formal
treatment for the connection with the finite case.

1.1 Our First Contribution: Optimal Thresh-
olds for (J,K)-Secretary Problem We give a formal
treatment of the infinite model and define a special class
A of piecewise continuous infinite algorithms. Since the
infinite model is ultimately just a tool to analyze the fi-
nite (continuous) model, the special class A does not
need to include all conceivable notions of infinite algo-
rithms. In fact, we just need it to include the class of
(J,K)-threshold algorithms, which we describe next.
Quotas. It will be helpful to imagine that there are J
quotas QJ , QJ−1, . . . , Q1 available for selecting items,
where a quota with larger index is used first. For
instance, QJ is used first, and Q1 last.
Potentials. For k ≥ 1, during the execution of the
secretary problem, an arriving item is a k-potential or
has potential k, if it is the k-th best item among all
those (including itself) that have already arrived. We
say an item is a k≥-potential (pronounced as “at least
k-potential”) if it is a k′-potential for some k′ ≤ k.
Given a positive integer m, we use the notation [m] :=
{1, 2, . . . ,m}.
(J,K)-Threshold Algorithm. Such an algorithm is
characterized by JK thresholds (τj,k)j∈[J],k∈[K] such
that (i) for all j ∈ [J ], 0 < τj,1 ≤ τj,2 ≤ · · · ≤ τj,K ≤ 1;
and (ii) for all k ∈ [K], 0 < τJ,k ≤ τJ−1,k ≤ · · · ≤ τ1,k ≤
1. Quotas are used to select items as follows.
• For each j ∈ [J ] and k ∈ [K], after time τj,k,

the algorithm will select a k≥-potential, if for some
j′ ≥ j, quota Qj′ is still available when it arrives, in
which case we require available quota Qj′ with the
largest j′ be used. Selection is done greedily, i.e.,
the algorithm will select an arriving item whenever
it is possible according to the above rule.

Interpretation. Each quota Qj has different maturity
times. For instance, at time τj,1, the quota can only
be used for selecting 1-potential. Hence, condition (i)
means that there are K progressive maturity times,
where after time τj,k, quota Qj can be used for selecting
k≥-potentials. Condition (ii) means that quotas with
larger indices mature to the next stage earlier.
Finite Step Model. Similar thresholds (Tj,k)j∈[J],k∈[K]

can be defined for the finite step model, where a rule is
applied after step Tj,k instead of after time τj,k. In fact,
any result for threshold algorithms in the continuous
model can be viewed as a result for the step model in
which the thresholds are randomized such that each Tj,k
is concentrated around τj,kn by Chernoff Bound.
Optimality in a Nutshell. We first show (in Proposi-
tion 3.4) that any infinite algorithm in A , in particular
a threshold algorithm, is feasible for some maximiza-



tion primal continuous LP∞. To achieve this step, we
use an important property of the infinite model that
for any t ∈ [0, 1], the sample space of arrivals in [0, t]
has exactly the same structure as that in [0, 1]. Next,
we describe a procedure (in Section 3.4) to construct a
dual feasible solution q and pick thresholds at the same
time such that the corresponding threshold algorithm
gives a primal solution p, which together with q satis-
fies the complementary slackness conditions under the
continuous primal-dual LP framework by Tyndall [19]
and Levinson [17]. This establishes the optimality of
some threshold algorithm in LP∞.
Connection with the Finite Model. Observe that
a threshold algorithm can be applied readily to the
finite (continuous) model for any n. We show that
a threshold algorithm has some monotone property
(Definition 2.2), which implies that if it has ratio x
under the infinite model, then it has ratio at least x in
the finite model for any n, implying that LPn ≥ LP∞ for
all n (Theorem 3.1). Coming to a full circle, we conclude
from Proposition 3.5 that limn→∞ LPn = LP∞, proving
that the optimal threshold algorithm in the infinite
model is also asymptotically optimal in the finite model.

Theorem 1.1. (Optimal Thresholds for (J,K)-
Secretary Problem) There is a procedure to find ap-
propriate thresholds (τj,k)j∈[J],k∈[K] such that the cor-
responding (J,K)-threshold algorithm is optimal un-
der the infinite model and has a performance ratio
of ρJ,K := 1

min{J,K} · (J −
∑J
j=1(1− τj,1)K). Moreover,

under the finite model for any n, the same threshold al-
gorithm achieves a performance ratio of at least ρJ,K ,
which is asymptotically optimal. Furthermore, a result
from Kleinberg [14] implies that ρK,K ≥ 1−O( 1√

K
).

As a by-product, we discover that the optimal
threshold algorithm for the (J, 1)-case has a very nice
representation using rational numbers. Gilbert [9] gave
exact values of the first four optimal thresholds using
simple approximation techniques. We believe it would
be too tedious to directly analyze the limiting behavior
of the finite model to reach the same conclusion.

Theorem 1.2. ((J, 1)-Secretary Problem) There
is a procedure to construct an increasing sequence
{θj}j≥1 of rational numbers such that for any J ≥ 1,
the optimal (J, 1)-threshold algorithm uses thresholds
{τj,1 := 1

eθj
| 1 ≤ j ≤ J} (that can be computed in O(J3)

time) and has expected payoff
∑J
j=1 τj,1. For instance,

θ1 = 1, θ2 = 3
2 , θ3 = 47

24 , θ4 = 2761
1152 , θ5 = 4162637

1474560 ,
θ6 = 380537052235603

117413668454400 .

For general K ≥ 2, the optimal solution does not
have such a regular structure, but the continuous LP

still allows us to compute the exact solution. To de-
scribe the optimal solution, we use part of the principal
branch of the Lambert W function [16] W : [− 1

e , 0] →
[−1, 0], where z = W (z)eW (z) for all z ∈ [− 1

e , 0].
Gilbert [9] and Gusein-Zade [10] obtained the thresh-
olds τ1,2 and τ1,1 by using approximation calculation
and a recursion, respectively; to the best of our knowl-
edge, no previous work has computed the exact values
for thresholds τ2,1 and τ2,2.

Theorem 1.3. ((J, 2)-Secretary Problem for J =
1, 2) Define the thresholds: τ1,2 = 2

3 ; τ1,1 =
−W (− 2

3e ) ≈ 0.346982;
τ2,2 ≈ 0.517297 is the solution of: x lnx + lnx − (2 +
3 ln 2

3 )x+ 1− ln 2
3 = 0; τ2,1 = −W (−e−c/2) ≈ 0.227788,

where c := −(ln τ1,1)2 + 2 ln 2
3 ln τ1,1 + (ln τ2,2)2 −

2 ln 2
3 ln τ2,2 − 2τ2,2 + 4− 2 ln 2

3 .
Then, these thresholds can be used to achieve the

following optimal performance ratios:
(a) ρ1,2 := 2τ1,1 − τ21,1 ≈ 0.573567.

(b) ρ2,2 := 1
2 ·((2τ1,1−τ

2
1,1)+(2τ2,1−τ22,1)) ≈ 0.488628.

Our results on the infinite model are included
in our unpublished manuscript [5]. We present a
simplified version in Section 3. In particular, we prove
Theorem 1.2 in Section 3.3, and Theorems 1.1 and 1.3
in Section 3.4.
Significance and Impacts. By considering the infi-
nite model via continuous LP, we prove that a threshold
algorithm can attain the optimal performance ratio. We
remark that from experiments, the finite LPn can be
solved to reveal the exact optimal thresholds for that
particular n by observing precisely at which steps cer-
tain variables switch from zero to positive. However, to
prove directly that the optimal solution has this thresh-
old structure, one would need to consider messier recur-
rence relations instead of differential equations.

Although the idea of using complementary slack-
ness conditions to form an optimal primal-dual pair is
well-known, as seen in Section 3.4, it is non-trivial to
construct the primal and the dual functions in our case.
The high level idea is to start from a primal solution cor-
responding to some threshold algorithm, and to show
that the thresholds can be chosen such that a feasi-
ble dual can be constructed to satisfy complementary
slackness. Because of the two parameters (J,K), we
use double induction in the proof of Lemma 3.4 to give
a construction of such a feasible dual. Careful invari-
ants must be maintained in the induction hypothesis to
complete the induction step.

To illustrate our methods, we explicitly construct
the optimal thresholds for the (2, 2)-case in Sec-
tion 3.4.1, which is already very technical. One could
appreciate the elegance of our methods if one tries to



first solve the optimal solution of the finite LP, and then
consider its asymptotic behavior.

Our continuous LP analysis gives a very clear
perspective on the problem, and the new insights inspire
us to answer two related questions, whose connection
with our continuous LP analysis is described as follows.
(1) In general secretary problems such as online K-
item auction with random arriving bids [14], or in
the even more general matroid secretary problems, can
an algorithm making decisions based only on relative
merits achieve optimal ratio?

Observe that we can use our continuous LP analysis
to compute exactly the optimal ratio of the (2, 2)-
secretary problem, which is the same as that of the
online 2-item auction when the algorithm can only see
relative merits.

Hence, to prove that observing relative merits can-
not achieve optimal ratio, we construct a filtering algo-
rithm that considers the actual weights, and explicitly
prove that it has strictly larger ratio. To the best of
our knowledge, this is the first result showing that al-
gorithms based only on relative merits cannot achieve
optimal ratio for matroid secretary problems. This re-
sult is in contrast with the folklore that, for online 1-
item auction, no algorithm can have performance ratio
strictly larger than 1

e , which is achievable by an algo-
rithm that considers only relative merits.

Although this result might be intuitive, our formal
proof involves the computation of the optimal ratio for
the (2, 2)-secretary problem, and the ratio of our fil-
tering algorithm, both of which are technically inspired
from the continuous LP analysis.
(2) Under what conditions can a secretary algorithm
be modified to solve the edge-weighted online bipartite
matching problem with random arrival order [15, 12]?

We prove that a secretary algorithm (such as a
threshold algorithm) can be transformed with at least
the same performance ratio if it satisfies some monotone
property (Definition 2.2).

Kleinberg [14] gave an algorithm with performance
ratio 1−Θ( 1√

K
) for online K-item auction with random

arriving bids. Since Kleinberg’s algorithm can be
viewed as considering only relative merits, it is also a
(K,K)-secretary algorithm with the same performance
guarantee.

However, Kleinberg’s algorithm is not monotone
(Theorem 2.1). Hence, to prove that the online bipartite
K-matching problem can be solved with performance
ratio 1 − Θ( 1√

K
), we can first use our continuous LP

analysis to show that the optimal asymptotic ratio
can be achieved by a threshold algorithm, which is
monotone and hence can be transformed to an algorithm
for online bipartite matching.

1.2 Impacts on Online K-Item Auction with
Random Arriving Bids: Can Decisions Based
Only On Relative Merits Be Optimal? The on-
line K-item auction with random arriving bids [14] is
exactly the online bipartite K-matching problem with
one offline node having capacity K, and hence, as ob-
served by Buchbinder et al. [4], can be solved by any
monotone secretary algorithm with at least the same
guarantee.

Kleinberg [14] gave a randomized algorithm that
essentially makes decisions based only on relative merits
and has performance ratio 1 − O( 1√

K
). It follows that

the algorithm can be applied to the (K,K)-secretary
problem with the same performance guarantee, which
implies that the optimal (K,K)-threshold algorithm has
ratio ρK,K ≥ 1−O( 1√

K
).

Is Observing Relative Merits Sufficient? As de-
scribed in the survey by Ferguson [7], the original secre-
tary problem was posed such that an adversary chooses
n weights as in the online auction, but the performance
ratio of the algorithm is still the probability that the
best item is selected. The survey describes how the ad-
versary can use a distribution D to sample the n weights
such that any algorithm selects the best item with prob-
ability arbitrarily close to 1

e , which means the optimal
performance ratio can be achieved by an algorithm that
considers only relative merits. We do not find such a
similar proof concerning online 1-item auction, but folk-
lore [2] seems to believe that its performance ratio also
cannot be larger than 1

e . We give a simple intuition
here. One can find a large enough number Λ > 0 (de-
pending only on n) and apply the mapping w → Λw to
the weights generated from the same distributionD such
that with high probability the ratio of second largest
weight to that of the largest weight is arbitrarily small.
Hence, the performance ratio can be made arbitrarily
close to the probability that the algorithm selects the
best item, but since the algorithm can recover w from
Λw, the algorithm receives the same information as be-
fore.

Perhaps one might wonder if the online K-item
auction also has the same optimal performance ratio
as the (K,K)-secretary algorithm. On the contrary,
we show that in general considering relative weights is
strictly better than just observing relative merits, even
for the case K = 2.
α-Filtering Threshold Algorithm. Given a param-
eter α ∈ [0, 1], the α-filtering threshold algorithm Aα is
a modification of the optimal (2, 2)-threshold algorithm
A0, where there is one extra condition: the algorithm
selects an item only if its weight is at least α times the
largest weight seen so far. (Indeed, when α = 0, Aα is
equivalent to A0.) This rule has no effect if the arriv-



ing item is a 1-potential, but it might filter out some
2-potentials.

Theorem 1.4. (Considering Weights Does Help
in Online 2-Item Auction) For α = 0.25289, the
filtering threshold algorithm Aα has a performance ratio
of at least 0.492006, which is strictly larger than the
optimal ratio ρ2,2 ≈ 0.488628 of an algorithm that
makes decisions based only on relative merits.

We prove Theorem 1.4 in Section 4 under the con-
tinuous model, which can be interpreted as randomized
algorithms in the finite step model. We remark that ob-
taining such a result would have been very difficult, if
one had not known the thresholds to obtain the optimal
performance ratio for the (2, 2)-secretary problem.

1.3 Impacts on Edge-weighted Online Bipartite
K-Matching with Random Arrival Order: Gen-
eral Transformation Technique from Secretary
Problem We show that a (K,K)-threshold algorithm
can be applied to the edge-weighted online bipartite
K-matching problem, which was first proposed by Ko-
rula and Pál [15] and generalizes the weighted secretary
problem [1].
Edge-weighted Online Bipartite K-Matching. An
adversary fixes a bipartite graph G = (L ∪ R,E) with
non-negative edge weights, where L is the set of online
nodes and R is the set of offline nodes. Each offline
node has capacity K, which is the maximum number
of online nodes it can match to. The algorithm has
knowledge of only R and the number |L| of online nodes
initially. The online nodes arrive in a random order.
When an online node v arrives, all the weights wvr’s
of edges between v and the offline nodes r in R are
revealed to the algorithm. The algorithm either keeps
v unmatched or matches it irrevocably to one of the
offline nodes r with non-zero remaining capacity. The
objective is to maximize the performance ratio, which
is the expected sum of weights of edges matched by the
algorithm divided by that of the maximum weight K-
matching in the graph fixed by the adversary.

Kesselheim et al. [12] essentially showed that the
(1, 1)-threshold algorithm can be applied to the edge-
weighted online 1-matching problem to get a perfor-
mance ratio of 1

e . Independent of our work, in a recent
paper Kesselheim et al. [13] considered a general class
of online packing LPs. Their results imply that there is
an alternative rounding-based algorithm that achieves
performance ratio 1 − O( 1√

K
) for online K-matching

when K is large. For small K, their results imply that
there is an algorithm using one threshold that achieves
performance ratio 8.1, which is not optimal.
General Transformation. We show that any (K,K)-

secretary algorithm satisfying certain monotone prop-
erty (Definition 2.2) can be transformed into an al-
gorithm for the edge-weighted online bipartite K-
matching problem with performance ratio at least the
same as before. In particular, threshold algorithms sat-
isfy the monotone property.

Theorem 1.5. (Applying Secretary to Match-
ing) Any monotone (K,K)-secretary algorithm can be
transformed into an algorithm for edge-weighted online
bipartite K-matching with at least the same performance
guarantee. In particular, the optimal (K,K)-threshold
algorithm induces a deterministic algorithm with perfor-
mance ratio at least ρK,K ≥ 1−O( 1√

K
).

Our Techniques. We use a similar algorithm as
in [12], in which at every step, a K-matching is formed
between all arrived online nodes and offline nodes. How-
ever, we need a sophisticated objective function to
form this K-matching in order to relate the optimal
K-matching in hindsight with the expected payoff of
(K,K)-secretary problem. Next, we also consider a
backward randomized process, and use a coupling argu-
ment to show that the probability that a certain offline
node is available according to certain rule is at least the
probability that a quota can be used according to the
corresponding rule in secretary problem. Our transfor-
mation can even handle the case when offline nodes have
non-uniform capacities; the performance ratio is limited
by the minimum capacity. The details are in Section 5.

2 Preliminaries

2.1 Monotonicity of Threshold Algorithms We
discuss some properties of the threshold algorithms
defined in Section 1.1. Since we work with both discrete
steps in [n] and continuous time in [0, 1], we use I to
denote either [n] or [0, 1], and an instant ι ∈ I can either
mean a step i or a time t.

Observe that in the (J,K)-secretary problem, it
does not make sense for an algorithm to select an item
that is not a K≥-potential. We use [K∗] := {1, . . . ,K}∪
{⊥} to denote the potential of an arriving item, where
⊥ means the item is not within the best K items arrived
so far and should definitely be discarded.

Definition 2.1. (Economical) An algorithm A is
economical if whether to select an item depends only
on (1) at which instant ι it arrives, (2) the number j
of remaining quotas, (3) the item’s potential k. For-
mally, algorithm A can be described by an ensemble of
functions {Aι : ({0}∪ [J ])× [K∗]→ {0, 1}|ι ∈ I}, where
Aι(j, k) = 1 means that a k-potential arriving at instant
ι when there are j remaining quotas will be selected, and



0 otherwise. We assume Aι(0, k) = 0 and Aι(j,⊥) = 0,
for all ι ∈ I, j ∈ [J ] and k ∈ [K].

Definition 2.2. (Monotone) An algorithm A is
monotone if it is economical and the following happens
for each ι ∈ I.
(1) For all j ∈ [J ], k′ ≤ k ∈ [K], Aι(j, k′) ≥ Aι(j, k),

i.e., an item with better merit is more likely to be
selected.

(2) For all k ∈ [K], j ≤ j′ ∈ [J ], Aι(j′, k) ≥ Aι(j, k),
i.e., a selection is more likely if there are more
remaining quotas.

Proposition 2.1. Any threshold algorithm is mono-
tone.

Theorem 2.1. Kleinberg’s algorithm [14] can be im-
plemented as an economical (K,K)-secretary algorithm,
but is not monotone.

Proof. We first paraphrase Kleinberg’s algorithm [14]
for the model in which each item arrives with a random
time in [0, 1]. For simplicity, we assume that K is a
power of 2. For K = 1, simply run the 1

e -threshold
algorithm. For simplicity, we assume that any quotas
left unused are discarded in the recursive algorithm, and
this does not affect the analysis of the performance ratio.
For K ≥ 2, in the interval [0, 12 ], recursively run the

(K2 ,
K
2 )-algorithm (rescaling [0, 12 ] to [0, 1]) to select at

most K
2 items. Suppose ŷ is the K

2 -th best item among
items arriving in [0, 12 ]. Then, after time 1

2 , an item

better than ŷ is taken until at most K
2 items are taken

in the interval [12 , 1].
We prove that the algorithm is economical by

induction. For K = 1, the 1
e -threshold algorithm is

economical. For the inductive case K ≥ 2, consider the
(K,K)-algorithm. In the interval [0, 12 ], the (K2 ,

K
2 )-

algorithm is economical by the induction hypothesis.
Recall that we assume that if less than K

2 quotas are
used in [0, 12 ], then the extra quotas are discarded at
time 1

2 . After time 1
2 , observe that if there are exactly

K
2 − j quotas left, then exactly j items arriving after

time 1
2 have been selected that is better than ŷ, which

means that an item arriving at this point is better than
ŷ iff it is a (K2 + j)≥-potential. Hence, the algorithm is
economical.

However, observe that the algorithm is not mono-
tone. Suppose in the above analysis at some time after
1
2 , there are K

2 − 1 remaining quotas, which means that

a (K2 +1)-potential is better than ŷ and will be selected.
However, if there is one more quota left, i.e., there are
K
2 remaining quotas, then only K≥-potentials will be

selected. In particular, a (K2 + 1)-potential will not be
selected.

2.2 Analyzing Monotone Algorithms with
LPn(J,K) When we later transform a monotone sec-
retary algorithm A to an online bipartite matching al-
gorithm, it will be convenient to consider the finite step
model. We rewrite the linear program characterization
LPn(J,K) given in [4] as follows.

LPn(J,K)

max
∑J
j=1

∑K
k=1

∑n
i=1

1
n

∑K
`=k

(n−i`−k)(
i−1
k−1)

(n−1
`−1)

zj|k(i)

s.t. zj|k(i) ≤
∑i−1
m=1

1
m

∑K
`=1[z(j+1)|`(m)− zj|`(m)],

∀i ∈ [n], k ∈ [K], 1 ≤ j < J

zJ|k(i) ≤ 1−
∑i−1
m=1

1
m

∑K
`=1 zJ|`(m),

∀i ∈ [n], k ∈ [K]

zj|k(i) ≥ 0, ∀i ∈ [n], k ∈ [K], j ∈ [J ].

Interpretation. Consider any (J,K)-secretary algo-
rithm A (which could be randomized). For each i ∈ [n],
j ∈ [J ] and k ∈ [K], let zj|k(i) be the probability that
the item arriving at step i is selected using quota Qj
given that it is a k-potential, where the randomness
comes from the random order and the algorithm if any.
We implicitly require that zj|k(i) = 0 when i < k. We
note that our analysis will go through with these con-
straints. Throughout the analysis, we will change the
order of summation in the objective function for differ-
ent interpretation. The following lemmas were implied
by results from [4].

Lemma 2.1. The probability that there are exactly j
remaining quotas at the beginning of step i is
•
∑i−1
m=1

1
m

∑K
`=1[z(j+1)|`(m) − zj|`(m)] for 1 ≤ j <

J , and
• 1−

∑i−1
m=1

1
m

∑K
`=1 zJ|`(m) for j = J .

Proof. Let Zji be the event that quota Qj has been
used before step i. For each 1 ≤ m ≤ i − 1, the
probability that a selection is made at step m using
Qj is

∑K
`=1

1
mzj|`(m), where 1

m is the probability that
an `-potential arrives at step m. Then we have

Pr[Zji ] =
∑i−1
m=1

1
m

∑K
`=1 zj|`(m).

Observe that the event of having exactly j remaining

quotas at the beginning of step i is the event Zj+1
i ∧Zji ,

where ZJ+1
i is an always true event. Therefore, the

probability that there are exactly j remaining quotas at
the beginning of step i is

Pr[Zj+1
i ∧ Zji ] = Pr[Zj+1

i ]− Pr[Zji ]

=
∑i−1
m=1

1
m

∑K
`=1[z(j+1)|`(m)− zj|`(m)]



when 1 ≤ j < J , and

Pr[ZJi ] = 1− Pr[ZJi ] = 1−
∑i−1
m=1

1
m

∑K
`=1 zJ|`(m)

when j = J .

Lemma 2.2. (Interpretations of LPn) Given an
algorithm A, the corresponding z values are feasible in
LPn(J,K). Moreover, the quantities in the objective
function has the following interpretations.

• δk|l(i) :=
(n−i`−k)(

i−1
k−1)

(n−1
`−1)

is the conditional probability

that the item arriving at step i is a k-potential,
given that it is the `-th best item overall.

• γk(i) :=
∑J
j=1 zj|k(i) is the conditional probability

that an item is selected at step i, given that it is a
k-potential.
• β`(i) :=

∑`
k=1 δk|l(i) · γk(i) is the conditional

probability that the `-th best item overall is selected,
given that it arrives at step i.
• The expected payoff is given by the objective func-

tion, which can be rewritten as
∑K
`=1

1
n

∑n
i=1 β`(i).

Proof. Given that a k-potential arrives at step i, a
selection is made using quota Qj implies that there are
exactly j remaining quotas at the beginning of step i.
The fact that a k-potential arrives at step i does not
affect the relative ordering of items arrived before step
i, and hence does not affect the decisions of A before
step i. The feasibility of z immediately follows from
Lemma 2.1.

Now we consider the interpretations of quantities
in the objective function. Let a1, . . . , aK be the K best
items overall in order, where a1 is the best item.
• Given that a` arrives at step i, for each 1 ≤ k ≤ `,

the item a` is a k-potential if and only if exactly k−
1 items of {a1, . . . , a`−1} arrive before step i, which

happens with probability δk|l(i) =
(n−i`−k)(

i−1
k−1)

(n−1
`−1)

.

• Given that an item at step i is a k-potential, the
J events that it is selected using quota Qj for
j ∈ [J ] are disjoint; hence the item is selected with

probability γk(i) =
∑J
j=1 zj|k(i).

• Given that a` arrives at step i, for each 1 ≤ k ≤ `,
the probability that a` is a k-potential is δk|l(i);
hence the conditional probability that a` is selected
is β`(i) =

∑`
k=1 δk|l(i) · γk(i).

• For ` ∈ [K] and i ∈ [n], item a` arrives at step
i with probability 1

n . Then, a` is selected by
A with probability 1

n

∑n
i=1 β`(i). It follows that

the expected payoff of A is
∑K
`=1

1
n

∑n
i=1 β`(i),

from which we can obtain the objective function
of LPn(J,K) by substituting the functions β, δ and
γ.

Lemma 2.3. Suppose A is economical. Then, if
Ai(j, k) = 0, we have zj|k(i) = 0; if Ai(j, k) = 1, then
we have

zj|k(i)

=

{∑i−1
m=1

1
m

∑K
`=1[z(j+1)|`(m)− zj|`(m)], 1 ≤ j < J

1−
∑i−1
m=1

1
m

∑K
`=1 zj|`(m), j = J.

Proof. Since A is economical, if Ai(j, k) = 0, then
clearly we have zj|k(i) = 0. Now suppose Ai(j, k) =
1. Then given that a k-potential arrives at step i, a
selection is made using quota Qj if and only if there
are exactly j remaining quotas at the beginning of step
i. Recall that a k-potential arriving at step i does not
affect the decisions of A before step i. Therefore, zj|k(i)
is the probability that there are exactly j remaining
quotas at the beginning of step i. Hence, the equations
follow from Lemma 2.1.

Lemma 2.4. (Better Items More Likely Se-
lected) Given a monotone algorithm A, let β`(i) be
as defined in Lemma 2.2. For each i ∈ [n] and 1 ≤ k <
l ≤ K, we have βk(i) ≥ βl(i).

Proof. Let Ωk be the set of permutations such that the
k-th best item overall ak arrives at step i, and define
Ωl and al similarly. We define a bijection f : Ω` → Ωk
by swapping the positions of al and ak. It suffices to
prove that for all ω ∈ Ωl, if al is selected in ω, then ak
is selected in f(ω).

If al has potential q in ω, then after swapping, ak
has potential p ≤ q in f(ω), since k < l.

By monotonicity of A, one can do a case analysis to
see that if there are j remaining quotas when al arrives
in ω, then there are at least j remaining quotas when
ak arrives in f(ω). (The only tricky case is when ak
arrives at step i′ < i in ω and is selected, but after the
swap, al is not selected in f(ω), which means there is
one extra quota (compared to ω) at step i′. If this extra
quota is not used up before step i, then there is one
extra quota when ak arrives; otherwise, when the extra
quota is used up at some step before i, the algorithm
behaves exactly like before again until step i.)

Hence, by the monotonicity of A again, ak must
also be selected in f(ω).

3 Optimal Thresholds for (J,K)-Secretary
Problem

We give a procedure to construct optimal asymptotic
thresholds for (J,K)-secretary problem. Numerical
values associated with the (2, 2)-case are computed in
Section 3.4.1 and used in Section 4. Apart from these
values, Sections 4 and 5 can be read independently.



3.1 The Infinite Model We use the infinite model
as a tool to analyze the secretary problem when the
number n of items is large. We shall describe the
properties of our “infinite” algorithms, which can still
be applied to finite instances to obtain conventional
algorithms. We consider countably infinite number of
items, whose ranks are indexed by the set N of positive
integers, where lower rank means better merit. Hence,
the item with rank 1 is the best item. The arrival time
of each item is a real number drawn independently and
uniformly at random from [0, 1] (where the probability
that two items arrive at the same time is 0); the
(random) function ρ : N → [0, 1] gives the arrival time
of each item, where ρ(i) is the arrival time of the item
with rank i.
Input Sample Space. An algorithm can observe
the arrival times Σ of items and their relative merit,
which can be given by a total ordering ≺ on Σ. Given
ρ : N → [0, 1], we have the set Σρ := {ρ(i)| i ∈ N}, and
a total ordering ≺ρ on Σρ defined by ρ(i) ≺ρ ρ(j) if and
only if i < j. The sample space is Ω := {(Σρ,≺ρ)| ρ :
N → [0, 1]}, with a probability distribution induced by
the randomness of ρ; we say each ω = (Σ,≺) ∈ Ω is an
arrival sequence. We sometimes use time t ∈ Σ to mean
the item arriving at time t, for instance we might say
“the algorithm selects t ∈ Σ.”

Fact 3.1. (Every Non-Zero Interval Contains
Infinite Number of Items) For every interval I ⊆
[0, 1] with non-zero length, the probability that there exist
infinitely many items arriving in I is 1.

Infinite Algorithm. When an item arrives, an algo-
rithm must decide immediately whether to select that
item. Having an infinite number of items can make the
notion of an infinite algorithm tricky. However, the
infinite model is ultimately used as a tool to analyze
threshold algorithms for the finite model. Hence, with-
out loss of generality, we only consider monotone (and
economical) algorithms in the sense defined in Defini-
tion 2.2. Observe that for any item arriving at time
t, the number of items arriving before it and having
better merits is finite, and hence the potential of every
arriving item is well-defined. Therefore, an algorithm
A can still be considered as an ensemble of functions
{At : [J ]× [K∗]→ {0, 1} |t ∈ [0, 1]} as before.

Definition 3.1. (Outcome and Payoff) Let A be
an (infinite) algorithm. For ω ∈ Ω, the outcome
A(ω) is the number of items selected among the K
best items. The expected payoff of A is defined as
P (A) := Eω [A(ω)].

The reason we consider the infinite model is that for
any 0 < t ≤ 1, the sample space Ω(t) observed before

t has the same structure as Ω in the sense described in
the following Proposition 3.1. This allows us to analyze
the recursive behavior of any infinite algorithm.

Proposition 3.1. (Isomorphism between Ω(t) and
Ω) For any 0 < t ≤ 1, the sample space Ω(t) (with
distribution inherited from Ω) rescaled to [0, 1] (by
dividing each arrival time by t) has the same distribution
as Ω.

Proof. Recall that the probability distribution over Ω
is induced by the randomness of all the infinite arrival
times, each of which is a random number drawn in-
dependently and uniformly from [0, 1]. Similarly, the
probability distribution over Ω(t) is induced by the ran-
domness of arrival times before t, the number of which
is infinite by Fact 3.1. Moreover, each arrival time in
[0, t) is drawn independently and uniformly from [0, t),
which after rescaling is independently and uniformly
distributed in [0, 1].

Recall that for k ≥ 1, an arriving item is a k-
potential if it is the k-th best item among all those that
have already arrived, and a k≥-potential if it is a k′-
potential for some k′ ≤ k.

Proposition 3.2. (Distribution of Potentials)
For every k ≥ 1 and t > 0, with probability 1, the
following conditions hold.

1. There exists a 1-potential in [0, t).
2. There are finitely many k-potentials in [t, 1].

Proof. From Fact 3.1, with probability 1, there exists
an item arriving in [0, t). This implies that there
exists i ∈ N such that the item with rank i arrives at
ρ(i) ∈ [0, t). If ρ(i) is not a 1-potential, then a non-
empty subset S of items with ranks in {1, . . . , i − 1}
must have arrived before ρ(i). Since S is finite, the item
among them with smallest arrival time is a 1-potential.
Thus, there is a 1-potential in [0, t) with probability 1.

Similarly, from Fact 3.1, there exist k items in [0, t)
and let r be the maximum rank among those k. Every
k-potential in [t, 1] must have a rank in {1, . . . , r − 1};
that is, there are finite number of k-potentials in [t, 1]
with probability 1.

Remark 3.1. (Validity of Threshold Algorithms)
Consider a strange scenario when no items arrive at
τj,1, but, for every n, the item with rank n arrives
at time τ1,1 + 1

n . It follows that every item is a 1-
potential, but there is no “first” item arriving after τj,1.
One way to resolve this situation is that quota Qj is
simply “lost”. On the other hand, by Proposition 3.2,
with probability 1, there are only a finite number of
K≥-potentials arriving after τj,1, and hence this strange
scenario we describe happens with probability 0.



Piecewise Continuous. Given an algorithm A, j ∈
[J ] and k ∈ [K], define the function pAj|k : [0, 1] → [0, 1]

such that pAj|k(x) is the probability that A selects time
x using quota Qj given that x is a k-potential. Let
pA = (pAj|k)j∈[J],k∈[K] be the collection of functions for

A. We say A is piecewise continuous if every pAj|k
is piecewise continuous. We denote by A the class
of piecewise continuous algorithms; as we shall see,
this class of algorithms is general enough to capture
the asymptotic behavior for finite models with large n
number of items.

Proposition 3.3. Any threshold algorithm is piece-
wise continuous.

Proof. The argument is straightforward but the full
proof is tedious. As a special case, consider the
first threshold τJ,1 and the function pJ|1(x) giving the
probability that a 1-potential arriving at time x is
selected by using quota QJ , which is 0 for x < τJ,1, and
there is a discontinuity at τJ,1. At time x > τJ,1, the
probability pJ|1(x) is the same as that for the event of
the best item before time x arriving before τJ,1, and so
pJ|1(x) =

τJ,1
x for x > τJ,1. Other pj|k’s can be analyzed

similarly.

As discussed in the introduction, there is a linear
programming LPn for the finite step model such that the
optimal value of the LP gives the optimal performance
ratio, and every feasible solution gives a randomized
algorithm with the same objective value. As we will
see in Section 3.2, for the infinite model, any infinite
algorithm in A , in particular a threshold algorithm, is
feasible for some maximization primal continuous LP∞.
With slight abuse of notation, we let LPn and LP∞
denote the optimal values of the corresponding LPs.

Theorem 3.1. (Finite Optimal is at Least Infi-
nite Optimal) Let LPn and LP∞ be optimal values of
the LPs defined above. Then, LPn ≥ LP∞.

Proof. Note that an infinite algorithm can be applied
when the number n of items is finite, which can be
further implemented as a randomized algorithm in the
finite step model. As we will show in Section 3.4, there is
a threshold algorithm that achieves payoff LP∞, which
is optimal. It remains to prove that if a threshold
algorithm has payoff ρ in the infinite model, then for
any n, the payoff of the algorithm applied to the finite
continuous model with n items is at least ρ.

We suppose a threshold algorithm A has payoff ρ
in the infinite model and fix n. For an item t ∈ [0, 1],
let ω = (Σ,≺) ∈ Ω[t] be the arrival sequence up to
time t. Note that if item t has a rank larger than n,

then A[t](ω) = 0, i.e., item t cannot be selected by A.
Suppose item t has a rank at most n. Let ωn = (Σn,≺),
where Σn is obtained from Σ by removing all items with
ranks larger than n. Then item t is a k-potential in
ωn if and only if it is a k-potential in ω. Then we
have A[t](ωn) = A[t](ω). Therefore, A[t](ω) = 1 implies
A[t](ωn) = 1 for all t ∈ [0, 1]. It follows that the payoff of
applying A to the finite continuous model with n items
is at least ρ.

Main Approach. Note that LPn is the optimal payoff
for the finite model with n items. In Section 3.2, we
consider the continuous LP∞, which gives a connection
to the (finite) LP. From Proposition 3.5 in Section 3.2,
we can conclude that lim supn→∞ LPn ≤ LP∞. In
Sections 3.3 and 3.4, we show that the optimal payoff
for the infinite algorithm can be achieved by a threshold
algorithm, establishing Theorem 3.1. In particular, we
show that the optimal payoff for the infinite model is
LP∞. Hence, it follows that limn→∞ LPn = LP∞, and
there exist thresholds such that the threshold algorithm
achieves the asymptotic optimal payoff for the finite
model for large n, as stated in Theorem 1.1.

3.2 The Continuous Linear Programming For
the finite model with random permutation, Buchbinder
et al. [4] showed that there exists a linear programming
LPn(J,K) such that there is a one-to-one correspon-
dence between an algorithm for the (J,K)-secretary
problem with n items and a feasible solution of the
LP; the payoff of the algorithm is exactly the objec-
tive of LPn(J,K). Therefore, the optimal value of the
LPn(J,K) gives the maximum payoff of the (J,K)-
secretary problem with n items. We recall that the
quotas are used in the order QJ , QJ−1, . . . , Q1, and that
the variable zj|k(i) represents that the probability that
the i-th item is selected using quota Qj given that it is
a k-potential.

For the (J,K)-secretary problem in the infinite
model, we construct a continuous linear programming
such that every piecewise continuous algorithm corre-
sponds to a feasible solution, whose objective value is
the payoff of the algorithm. Hence, the optimal LP
gives an upper bound for the maximum payoff; we later
show that there exist thresholds such that the threshold
algorithm can achieve the optimal LP value.

For each j ∈ [J ] and k ∈ [K], let pj|k(x) be a
function of x that is piecewise continuous in [0, 1]. In the
rest of this paper, we use “∀x” to denote “for almost all
x”, which means for all but a measure zero set. Define



LP∞(J,K) as follows.

LP∞(J,K)

max w(p) =∑J
j=1

∑K
k=1

∫ 1

0

(∑K
`=k

(
`−1
k−1
)
(1− x)`−k

)
xk−1pj|k(x)dx

s.t. pj|k(x) ≤
∫ x
0

1
y

∑K
`=1[p(j+1)|`(y)− pj|`(y)]dy,

∀x ∈ [0, 1], k ∈ [K], 1 ≤ j < J

pJ|k(x) ≤ 1−
∫ x
0

1
y

∑K
`=1 pJ|`(y)dy, ∀x ∈ [0, 1], k ∈ [K]

pj|k(x) ≥ 0, ∀x ∈ [0, 1], k ∈ [K], j ∈ [J ].

Fix an algorithm A ∈ A . For each x and j and k,
the events Ejx, Zjx, V kx and W k

x are defined as follows.
Let Ejx be the event that time x is selected using quota
Qj . Let Zjx be the event that quota Qj has already
been used before time x, i.e., all quotas Qj′ for j′ ≥ j
have been used. Let V kx be the event that time x is a
k-potential. Let W k

x be the event that time x is the
k-th best item overall. Note that Zjx implies Zj+1

x , and

Zj+1
x ∧ Zjx is the event that quota Qj is the next quota

available to be used at time x, for 1 ≤ j < J . Also

observe that Ejx implies Zj+1
x ∧ Zjx.

Lemma 3.1. (Independence between Potential
and Past History) For 0 < x ≤ 1, and positive
integer k, the event V kx that x is a k-potential is
independent of the arrival sequence observed before time
x. In particular, this implies that for any K > 1, the
event that x is a K≥-potential is also independent of the
arrival sequence observed before time x.

Proof. By Proposition 3.1 the arrival sequence observed
before time x can be generated by sampling a random
arrival time for each integer in N independently and
uniformly in [0, x). We distinguish two cases: (1)
without knowledge of x, this sequence is generated for
all integers in N; (2) given that x is a k-potential for
some k ∈ [K], this sequence is generated for all integers
in N \ {k}. Since the total ordering on a sequence
observed before x is inherited from N and there is a
bijection between N and N\{k}, the sequences generated
in the two cases have the same distribution. Hence, the
event V kx is independent of Ω(x). Since the V kx ’s for
k ∈ [K] are disjoint, the event that x is a K≥-potential
and Ω(x) are independent.

Lemma 3.2. For all j ∈ [J ] and x ∈ [0, 1], we have

Pr(Zjx) =
∫ x
0

1
y

∑K
`=1 pj|`(y)dy.

Proof. For ` ∈ [K], let y` be the arrival time of the `-th
best item in [0, x]. Define Y := max`∈[K]{y`}. Then for

each y ∈ [0, x] we have Pr(Y ≤ y) = yK

xK
. It follows that

the probability density function of Y is f(y) = KyK−1

xK
.

Also note that given Y = y, we have Pr(y` = y) = 1
K

for all ` ∈ [K]. It follows that Pr(Ejy|Y = y) =∑K
`=1 Pr(Ejy|V `y ) Pr(y` = y) = 1

K

∑K
`=1 pj|`(y).

There is no K≥-potential in (y, x] and hence no
item is selected. Thus Zjx happens if and only if either

Zjy or Ejy (i.e. Zj+1
y ∧ Zjy ∧ Ejy) happens. By using

arguments similar to the proof of Proposition 3.1, we
can show that, whether the event Y = y happens or
not, the distribution of sample space Ω(y) of arrival time
observed before time y remains the same; in particular,
the events Zjy and Y = y are independent. Moreover

the events Zjy and Ejy are disjoint. By the law of total
probability we have

Pr(Zjx) =
∫ x
0

Pr(Zjx|Y = y)f(y)dy

=
∫ x
0

[Pr(Zjy |Y = y) + Pr(Ejy|Y = y)]Ky
K−1

xK
dy

= K
xK

∫ x
0

[Pr(Zjy) + 1
K

∑K
`=1 pj|`(y)]yK−1dy.

Fix j and let g(x) := Pr(Zjx) be a function with respect
to x. Taking derivatives on both sides of xKg(x) =

K
∫ x
0

[g(y)+ 1
K

∑K
`=1 pj|`(y)]yK−1dy and using piecewise

continuity, we have g′(x) = 1
x

∑K
`=1 pj|`(y)dy for almost

all x. Then g(x) =
∫ x
0

1
y

∑K
`=1 pj|`(y)dy + c for some

constant c. By definition g(0) = 0 and thus c = 0.

Therefore we have Pr(Zjx) =
∫ x
0

1
y

∑K
`=1 pj|`(y)dy.

Proposition 3.4. (Optimal Payoff At Most Op-
timal LP∞(J,K)) Let A ∈ A be an algorithm for the
(J,K)-secretary problem. Let p = (pj|k)j∈[J],k∈[K] be
the functions such that for j ∈ [J ] and k ∈ [K] and
x ∈ [0, 1], the probability that time x is selected by A
using quota Qj given that time x is a k-potential is
pj|k(x). Then p is a feasible solution of LP∞(J,K).
Moreover, the payoff of A is exactly the objective w(p) =∑J
j=1

∑K
k=1

∫ 1

0

(∑K
`=k

(
`−1
k−1
)
(1− x)`−k

)
xk−1pj|k(x)dx.

Proof. We first show that the payoff P (A) = w(p). Con-
sider the relation between Pr(Ejx|V kx ) and Pr(Ejx|W k

x ).
If time x is the `-th best item overall, then it must
be a k-potential for some k ≤ `. Moreover, we have
Pr(V kx |W `

x) =
(
`−1
k−1
)
xk−1(1−x)`−k (by convention 00 =

1). Then

Pr(Ejx|W `
x) =

∑`
k=1 Pr(Ejx|V kx ∧W `

x) Pr(V kx |W `
x)

=
∑`
k=1 Pr(Ejx|V kx ) Pr(V kx |W `

x)

=
∑`
k=1

(
`−1
k−1
)
xk−1(1− x)`−kpj|k(x).

Let I` be the indicator that the `-th best item
is selected. Since the probability density function of



each arrival time is uniform in [0, 1], the payoff of the
algorithm is

P (A)E
[∑K

`=1 I`
]

=
∑K
`=1 E[I`]

=
∑K
`=1 Pr(`-th best item selected)

=
∑K
`=1

∑J
j=1

∫ 1

0
1 · Pr(Ejx|W `

x)dx

=
∑J
j=1

∫ 1

0

∑K
`=1

∑`
k=1

(
`−1
k−1
)
xk−1(1− x)`−kpj|k(x)dx

= w(p).

For the constraints, by Lemma 3.2 we
have pJ|k(x) = Pr(EJx |V kx ) ≤ Pr(ZJx ) =

1 −
∫ x
0

1
y

∑K
`=1 pJ|`(y)dy, and pj|k(x) = Pr(Ejx|V kx ) ≤

Pr(Zj+1
x ∧ Zjx) = Pr(Zj+1

x ) − Pr(Zjx) =∫ x
0

1
y

∑K
`=1[p(j+1)|`(y) − pj|`(y)]dy for 1 ≤ j < J ,

where the second last equality follows since Zjx implies
Zj+1
x .

The following proposition relates the optimal values
of LPn(J,K) and LP∞(J,K). The proof is omitted here
and can be found in Proposition 3.2 of [5].

Proposition 3.5. (Relation between LPn(J,K)
and LP∞(J,K)) Let LPn and LP∞ be the optimal values
of LPn(J,K) and LP∞(J,K), respectively. Then, for ev-
ery ε > 0, there exists N ∈ N such that LP∞ ≥ LPn − ε
for all n ≥ N .

3.3 A Primal-Dual Method for Finding Thresh-
olds We give a primal-dual procedure that finds appro-
priate thresholds for which the corresponding (J,K)-
threshold algorithm corresponds to an optimal solution
in the continuous linear program LP∞(J,K). To illus-
trate our primal-dual method, we first consider the spe-
cial case K = 1 as described in Theorem 1.2; the general
case is given in Section 3.4.

A J-threshold algorithm is a special case with
tj := τj,1, and recall that any algorithm in the class
A corresponds to a feasible solution in the following
primal continuous LP:

LP∞(J)

max w(p) =
∑J
j=1

∫ 1

0
pj(x)dx

s.t. pj(x) ≤
∫ x
0

1
y [pj+1(y)− pj(y)]dy,

∀x ∈ [0, 1], 1 ≤ j < J

pJ(x) ≤ 1−
∫ x
0
pJ (y)
y dy, ∀x ∈ [0, 1]

pj(x) ≥ 0, ∀x ∈ [0, 1], j ∈ [J ].

The dual LP for LP∞(J) is as follows (see [17] for
details on primal-dual continuous LP):

D∞(J)

min
∫ 1

0
qJ(x)dx

s.t. q1(x) + 1
x

∫ 1

x
q1(y)dy ≥ 1, ∀x ∈ [0, 1]

qj(x) + 1
x

∫ 1

x
[qj(y)− qj−1(y)]dy ≥ 1,

∀x ∈ [0, 1], 1 < j ≤ J
qj(x) ≥ 0, ∀x ∈ [0, 1], j ∈ [J ].

Weak Duality. Similar to normal LP, for any feasible
primal p and dual q, the value of the primal objective
is at most that of the dual objective. Moreover, if
their objective values are equal, then both are optimal.
We also have the following complementary slackness
conditions.

Fact 3.2. (Complementary Slackness Condi-
tions) Let p = (p1, . . . , pJ) and q = (q1, . . . , qJ) be
feasible solutions of LP∞(J) and D∞(J), respectively.
Then, p and q are primal and dual optimal, respectively,
if they satisfy the following conditions ∀x ∈ [0, 1]:
(pJ(x) +

∫ x
0

1
ypJ(y)dy − 1)qJ(x) = 0

(pj(x) +
∫ x
0

1
y [pj(y)− pj+1(y)]dy)qj(x) = 0, 1 ≤ j < J

(q1(x) + 1
x

∫ 1

x
q1(y)dy − 1)p1(x) = 0

(qj(x) + 1
x

∫ 1

x
[qj(y)− qj−1(y)]dy − 1)pj(x) = 0,

1 < j ≤ J.

Primal-Dual Method. We start from a primal feasi-
ble solution p corresponding to a J-threshold algorithm,
whose thresholds are to be determined. We can deter-
mine the values of the thresholds one by one in order to
construct a dual q such that complementary slackness
conditions hold, which implies that with those found
thresholds the corresponding J-threshold algorithm is
optimal.
(1) Forming Feasible Primal Solution p. Suppose
p is a (feasible) primal corresponding to a J-threshold
algorithm with thresholds 0 < tJ ≤ tJ−1 ≤ · · · ≤ t1 ≤ 1.
We denote Ejx to be the event that item at x is selected
by using quota Qj (where quotas with larger j’s are used
first), Vx to be the event that x is a 1-potential, and Zjx
to be the event that at time x, quota Qj has already
been used (and so have the quotas with indices larger
than j). For notational convenience, ZJ+1

x is the whole
sample space, i.e., an always true event.

For each j ∈ [J ], consider the conditional probabil-

ity Pr(Ejx|Zj+1
x ∧Zjx ∧Vx) of the event that item at x is

selected by using quota Qj , given that x is a 1-potential
and quota Qj is the next available quota at time x. By
definition of threshold algorithms, this conditional prob-
ability is 0 if x < tj and is 1 if x ≥ tj . Hence, we have
the following.



Pr(Ejx|Zj+1
x ∧ Zjx ∧ Vx) =

Pr(Ejx|Vx)
Pr(Zj+1

x ∧Zjx|Vx)

=
pj(x)

Pr(Zj+1
x ∧Zjx|Vx)

=

{
0, 0 ≤ x < tj

1, tj ≤ x ≤ 1,

where from independence of Vx and Zjx, and Lemma 3.2,
we have:

Pr(Zj+1
x ∧ Zjx|Vx) = Pr(Zj+1

x ∧ Zjx)

=

{∫ x
0

1
y [pj+1(y)− pj(y)]dy, 1 ≤ j < J

1−
∫ x
0

1
ypJ(y)dy, j = J.

This implies that in the primal LP∞(J), the j-th
constraint is equality in the range [tj , 1], but might be
strict inequality in the range [0, tj) (hence forcing qj to
0); the function pj is zero in the range [0, tj), but might
be strictly positive in the range [tj , 1] (hence forcing
equality for the j-th constraint in dual).
(2) Finding Feasible Dual q to Satisfy Comple-
mentary Slackness. To ensure that a dual solution
q satisfies complementary slackness together with the
above primal p, we require the following for each j ∈ [J ],
where for notational convenience we write q0 ≡ 0.
(3.1){

qj(x) = 0, x ∈ [0, tj ];

qj(x) + 1
x

∫ 1

x
[qj(y)− qj−1(y)]dy = 1, x ∈ [tj , 1].

The astute reader might notice that we have im-
posed an extra condition qj(tj) = 0. This will ensure
that as long as (3.1) is satisfied by some non-negative
qj , the j-th constraint in D∞(J) is also automatically
satisfied. For x ∈ [tj , 1], the constraint is clearly satis-
fied with equality; for x ∈ [0, tj), observing that both
qj and qj−1 vanishes below tj the left hand side re-

duces to 1
x

∫ 1

tj
[qj(y) − qj−1(y)]dy, which is larger than

qj(tj) + 1
tj

∫ 1

tj
[qj(y)− qj−1(y)] = 1.

As we shall see soon, in the recursive equations
(3.1), the function q1 and the threshold t1 does not
depend on J . In particular, the thresholds tj ’s and
functions qj ’s found for D∞(J) can be used to extend
to the solution for D∞(J + 1). This explains the nice
structure of the solution that appears in Theorem 1.2.
Objective Value. The objective value of D∞(J) is∫ 1

0
qJ(y)dy =

∫ 1

tJ
qJ(y)dy. From the second equation

of (3.1) evaluating at x = tj , we have the recursive

definition
∫ 1

tj
qj(y)dy =

∫ 1

tj−1
qj−1(y)dy + tj , which

immediately implies that the objective value for D∞(J)

is
∑J
j=1 tj , as stated in Theorem 1.2. Hence, it suffices

to show the existence of dual functions as required in
(3.1).

Lemma 3.3. (Existence of Feasible Dual Satis-
fying Complementary Slackness) There is a pro-

cedure to generate an increasing sequence {θj}j≥1 of
rational numbers producing tj := 1

eθj
, and a sequence

{qj : [0, 1] → R+}j≥1 of non-negative functions that
satisfy (3.1).

Proof. We show the existence result by induction; our
induction proof actually gives a method to generate
such tj ’s and qj ’s. We explicitly describe the method
in Section 3.3.1, and it can be seen that the time to
generate the first J thresholds is O(J3).

For convenience, we denote q0(x) ≡ 0 and set
θ0 := 0 and t0 := 1. Suppose for some j ≥ 1 we
have constructed the function qj−1 which is continuous
and can be positive only in [tj−1, 1]. We next wish
to find continuous function qj and threshold tj < tj−1
satisfying (3.1). If such qj and tj exist, then we must
have the following for x ∈ [tj , 1]:

qj(x) + 1
x

∫ 1

x
[qj(y)− qj−1(y)]dy = 1

xqj(x) +
∫ 1

x
[qj(y)− qj−1(y)]dy = x

(xq′j(x) + qj(x))− qj(x) + qj−1(x) = 1

q′j(x) = 1
x (1− qj−1(x)).

Since qj(1) = 1, we must have

(3.2) qj(x) = 1 + lnx+
∫ 1

x
qj−1(y)

y dy, ∀x ∈ [tj , 1]

To show that both qj and tj exist, we need a
stronger induction hypothesis. Hence, we first explicitly
solve for q1 and t1, and state what properties we can
assume. Since q0(x) ≡ 0, we have q1(x) = 1 + lnx on
[t1, 1]. In order to have q1(t1) = 0, we must have t1 := 1

e
and θ1 := 1. We give our induction hypothesis, which
is true for j = 1.
Induction Hypothesis. Suppose for some j ≥ 1, there
exist functions {qi}ji=0 and thresholds {ti}ji=0 satisfying
(3.1) such that the following holds.

1. The function qj is non-negative and continuous.

2. There exists an increasing sequence {θi}ji=0 of ra-
tional numbers that defines the thresholds ti :=
exp(−θi) such that qj is 0 on [0, tj ] and between
successive thresholds, qj(x) is given by a polyno-
mial in lnx with rational coefficients.

3. For x ∈ (tj , 1), qj(x) > qj−1(x).
We next show the existence of qj+1 and tj+1.

Finding qj+1. From (3.2), qj+1(x) must agree on
[tj+1, 1] with the function q(x) given by q(x) = 1 +

lnx+
∫ 1

x
qj(y)
y dy, which is continuous.

We first check that we can set qj+1(x) := q(x) for
x ∈ [tj , 1]. Since from the induction hypothesis we have
qj > qj−1 on (tj , 1), we immediately have ∀x ∈ [tj , 1),

q(x) = 1 + lnx+
∫ 1

x
qj(y)
y dy > 1 + lnx+

∫ 1

x
qj−1(y)

y dy =



qj(x). In particular, we have q(tj) > qj(tj) = 0, and
also q(x) ≥ qj(x) ≥ 0 for x ∈ [tj , 1].

From the induction hypothesis on qj , we can
conclude that between successive thresholds in [tj , 1],
qj+1(x) can also be represented by a polynomial in
lnx with rational coefficients. Hence, it follows that

dj :=
∫ 1

tj

qj(y)
y dy is rational.

Finding tj+1. We next consider the behavior of q
for x ≤ tj . Observe that in this range, q(x) = 1 +
lnx + dj , which is a polynomial in lnx with rational
coefficients, and strictly increasing in x. Moreover, we
have q(tj) > 0 and as x tends to 0, q(x) tends to negative
infinity. Hence, there is a unique tj+1 ∈ (0, tj) such
that q(tj+1) = 0; we set tj+1 := exp(−θj+1), where
θj+1 := 1 + dj , which is rational.

Hence, we can set qj+1(x) := q(x) for x ∈ [tj+1, 1]
and 0 for x ∈ [0, tj+1]. We can check that the conditions
in the induction hypothesis hold for qj+1 and tj+1 as
well. This completes the induction proof.

3.3.1 Explicit Methods for the (J, 1)-Case For
K = 1 with thresholds denoted by tj = τj,1 for j ∈ [J ],
the proof of Lemma 3.3 gives a method to generate the
dual variables qj ’s and thresholds tj ’s, which we describe
below.

J-ThresholdsGenerator
Set θ1 := 1 and t1 := e−θ1 . Let q1 be a function
defined on [0, 1] such that q1(x) = 0 for x ∈ [0, t1)
and q1(x) = 1 + lnx for x ∈ [t1, 1].
For j = 1, 2, · · · , J − 1

Set θj+1 := 1 +
∫ 1

tj

qj(y)
y dy and tj+1 := e−θj+1 ∈

(0, tj).

Let qj+1 be a function defined on [0, 1] such that

qj+1(x) =


0, x ∈ [0, tj+1)

1 + lnx+
∫ 1

tj

qj(y)
y dy, x ∈ [tj+1, tj)

1 + lnx+
∫ 1

x
qj(y)
y dy, x ∈ [tj , 1].

One can see that the qj(x)’s are polynomials in
lnx with rational coefficients. Hence we can describe
the algorithm by maintaining the rational coefficients
of the polynomials. The modified method is described
as follows, and it can be seen that generating the first
J thresholds takes O(J3) time.

3.4 Primal-Dual Method for General (J,K)-
case In Section 3.3 we have shown that there exist
thresholds such that the corresponding J-threshold al-
gorithm is optimal. We apply our primal-dual method
to the general (J,K)-case following a similar framework.

θ-Generator
For integer n ≥ 1, let 0n be the zero vector with n
coordinates. Let θ0 := 0.
For positive integers j and k, let cj,k ∈ RJ+1 be
a vector (corresponding to qj in interval [tk, tk−1]
where t0 := 1). Denote by cj,k(i) the i-th coordinate
of cj,k for i ∈ [J + 1].
Set c1,1 := (1, 1, 0J−1) and θ1 := 1.
For j = 1, 2, 3, . . .

Let α ∈ R be an auxiliary variable with initial
value α := 0.

For k = 1, 2, . . . , j

Let d ∈ RJ be such that d(i) = − cj,k(i)i for each
i ∈ [J ].
If k > 1, then set α := α+∑J+1
i=1

cj,k−1(i)
i [(−θk−2)i − (−θk−1)i].

Set cj+1,k := (1, 1, 0J−1)+

(
∑J+1
i=1

cj,k(i)
i (−θk−1)i, d) + (α, 0J).

Set α := α+
∑J+1
i=1

cj,j(i)
i [(−θj−1)i − (−θj)i].

Set cj+1,j+1 := (1, 1, 0J−1) + (α, 0J).
Set θj+1 := cj+1,j+1(1).

After proving Theorem 1.1, we apply the construction
procedure to the (2, 2)-case as an illustration, and hence
prove Theorem 1.3, in Section 3.4.1.

For k ∈ [K] and x ∈ [0, 1], define αk(x) :=∑K
`=k

(
`−1
k−1
)
(1 − x)`−kxk−1. The dual continuous LP

for LP∞(J,K) is as follows.

D∞(J,K)

min
∑K
k=1

∫ 1

0
qJ|k(x)dx

s.t. q1|k(x) + 1
x

∫ 1

x

∑K
`=1 q1|`(y)dy ≥ αk(x),

∀x ∈ [0, 1], k ∈ [K]

qj|k(x) + 1
x

∫ 1

x

∑K
`=1[q(j)|`(y)− q(j−1)|`(y)]dy ≥ αk(x)

∀x ∈ [0, 1], k ∈ [K], 1 < j ≤ J
qj|k(x) ≥ 0, ∀x ∈ [0, 1], k ∈ [K], j ∈ [J ].

For LP∞(J,K) and D∞(J,K), we say a constraint
is the (j, k)-th constraint if pj|k or qj|k is the concerned
function in the constraint. For instance, the (j, k)-th
constraint in the dual with 1 < j ≤ J is qj|k(x) +
1
x

∫ 1

x

∑K
`=1[q(j)|`(y) − q(j−1)|`(y)]dy ≥ αk(x), ∀x ∈

[0, 1]. We still have weak duality and the following
complementary slackness conditions.

Fact 3.3. (Complementary Slackness Condi-
tions) Let p = (pj|k)j∈[J],k∈[K] and q = (qj|k)j∈[J],k∈[K]

be feasible solutions of LP∞(J,K) and D∞(J,K), re-
spectively. Then p and q are primal and dual optimal,
respectively, if they satisfy the following conditions



∀x ∈ [0, 1], k ∈ [K]:

(pj|k(x) +
∫ x
0

1
y

∑K
`=1[pj|`(y)− p(j+1)|`(y)]dy)qj|k(x) = 0

1 ≤ j < J

(pJ|k(x) +
∫ x
0

1
y

∑K
`=1 pJ|`(y)dy − 1)qJ|k(x) = 0

(qj|k(x) + 1
x

∫ 1

x

∑K
`=1[q(j)|`(y)− q(j−1)|`(y)]dy − αk(x))

· pj|k(x) = 0, 1 < j ≤ J

(q1|k(x) + 1
x

∫ 1

x

∑K
`=1 q1|`(y)dy − αk(x))p1|k(x) = 0.

Primal-Dual Method. We start from a primal
feasible solution p corresponding to a (J,K)-threshold
algorithm, whose thresholds are to be determined. We
can determine the values of the thresholds one by one
in order to construct a dual q such that complementary
slackness conditions hold, which implies that with those
found thresholds the corresponding (J,K)-threshold
algorithm is optimal.
(1) Forming Feasible Primal Solution p. Suppose
p is a (feasible) primal corresponding to a (J,K)-
threshold algorithm with JK thresholds τj,k such that
0 < τJ,k ≤ τJ−1,k ≤ · · · ≤ τ1,k ≤ 1 for k ∈ [K] and
0 < τj,1 ≤ τj,2 ≤ · · · ≤ τj,K ≤ 1 for j ∈ [J ]. Suppose
Ejx is the event that the item at x is selected by using
quota Qj (where quotas with larger j’s are used first),
V kx is the event that x is a k-potential, and Zjx is the
event that at time x, quota Qj has already been used
(and so have the quotas with indices larger than j). For
notational convenience, ZJ+1

x is the whole sample space,
i.e., an always true event.

For each j ∈ [J ], consider the conditional probabil-

ity Pr(Ejx|Zj+1
x ∧Zjx∧V kx ) of the event that item at x is

selected by using quota Qj , given that x is a k-potential
and quota Qj is the next available quota at time x. By
definition of threshold algorithms, this conditional prob-
ability is 0 if x < τj,k and is 1 if x ≥ τj,k. Hence, we
have the following.

Pr(Ejx|Zj+1
x ∧ Zjx ∧ V kx ) =

Pr(Ejx|V
k
x )

Pr(Zj+1
x ∧Zjx|V kx )

=
pj|k(x)

Pr(Zj+1
x ∧Zjx|V kx )

=

{
0, 0 ≤ x < τj,k

1, τj,k ≤ x ≤ 1,

where from independence of V kx and Zjx (Lemma 3.1),
and Lemma 3.2, we have:

Pr(Zj+1
x ∧ Zjx|V kx )

=

{∫ x
0

1
y

∑K
`=1[p(j+1)|`(y)− pj|`(y)]dy, 1 ≤ j < J

1−
∫ x
0

1
y

∑K
`=1 pJ|`(y)dy, j = J.

This implies that in the primal LP∞(J,K), the
(j, k)-th constraint is equality in the range [τj,k, 1], but
might be strict inequality in the range [0, τj,k) (hence

forcing qj|k to be 0); the function pj|k is zero in the
range [0, τj,k), but might be strictly positive in the
range [τj,k, 1] (hence forcing equality for the (j, k)-th
constraint in dual).
(2) Finding Feasible Dual q to Satisfy Comple-
mentary Slackness. To ensure that a dual solution
q satisfies complementary slackness together with the
above primal p, we require the following for each j ∈ [J ]
and k ∈ [K], where for notational convenience we write
q0|k ≡ 0 for all k ∈ [K].

(3.3)


qj|k(x) = 0, x ∈ [0, τj,k];

qj|k(x) + 1
x

∫ 1

x

∑K
`=1[qj|`(y)

−q(j−1)|`(y)]dy = αk(x), x ∈ [τj,k, 1].

Here the extra condition qj|k(τj,k) = 0 ensures that
as long as (3.3) is satisfied by some non-negative qj|k,
the (j, k)-th constraint in D∞(J) is also automatically
satisfied. Proof for this indication is not straightforward
and requires stronger conditions for the dual functions,
which we provide along the way we prove Theorem 1.1.
From the recursive equations (3.3), the thresholds τj,k’s
and functions qj|k’s found for D∞(J,K) can be used to
extend to the solution for D∞(J + 1,K).
Objective Value. The objective value of D∞(J,K)

is
∫ 1

0

∑K
k=1 qJ|k(x)dx =

∫ 1

τJ,1

∑K
k=1 qJ|k(x)dx. From

equations (3.3) we have for j ∈ [J ],∫ 1

τj,1

∑K
k=1 qj|k(x)dx−

∫ 1

τj−1,1

∑K
k=1 q(j−1)|k(x)dx

= τj,1α1(τj,1),

where τ0,1 = 1. This together with α1(x) = 1−(1−x)K
x

implies that the objective value of D∞(J,K) is∫ 1

τJ,1

∑K
k=1 qJ|k(x)dx =

∑J
j=1 τj,1α1(τj,1)

= J −
∑J
j=1(1− τj,1)K .

To prove Theorem 1.1, it suffices to show the
existence of dual functions as required in (3.3). The
proof of the following lemma is omitted here and can be
found in Lemmas 5.1, 5.2 and 5.3 of [5].

Lemma 3.4. (Existence of Feasible Dual Satis-
fying Complementary Slackness) There is a proce-
dure to find appropriate thresholds (τj,k)j∈[J],k∈[K] and a
collection (qj|k)j∈[J],k∈[K] of non-negative functions that
satisfy (3.3).

3.4.1 An Illustration: the (2, 2)-case As an ex-
ample, we solve the (2, 2)-secretary problem using the
primal-dual method. In particular, we settle thresholds
for an optimal (2, 2)-threshold algorithm. Then we cal-
culate the primal variables and expected payoff that will
be useful in Section 4.



Finding Optimal Thresholds. We follow the primal-
dual method described above to find optimal thresholds
τj,k for j, k ∈ {1, 2} for the (2, 2)-case. In particular,
we use the equations (3.3) to set the dual qj|k’s. Let
r1(x) := q1|1(x) + q1|2(x) and r2(x) := q2|1(x) + q2|2(x).
Observe that α1(x) = 2− x and α2(x) = x.
Finding τ1,2. Note that in [τ1,2, 1], r1(x) must agree
with the function r(x) such that

r(x) + 2
x

∫ 1

x
r(y)dy = 2.

Solving the equation we get r(x) = 4x − 2. Also note
that q1,2(x) in [τ1,2, 1] must agree with q(x) such that

q(x) + 1
x

∫ 1

x
r(y)dy = x.

Solving the equation we get q(x) = 3x − 2. Setting
q(x) = 0 we get x = 2

3 ∈ (0, 1). Hence τ1,2 = 2
3 . Also,

for x ∈ [τ1,2, 1], we have∫ 1

x
r1(y)dy = 2x− 2x2.

In the following calculation, we will use the substi-
tution τ1,2 = 2

3 when necessary.
Finding τ1,1. Note that q1|2(x) = 0 in [0, τ1,2], and
q1|1(x) = r1(x) in [τ1,1, τ1,2] must agree with q(x) such
that

q(x) + 1
x

∫ τ1,2
x

q(y)dy + 1
x

∫ 1

τ1,2
r1(y)dy = 2− x.

Solving the equation we get q(x) = 2 ln x
τ1,2
−2x+3τ1,2.

Setting q(x) = 0 we get x = −W (− 2
3e ) ≈ 0.346982 ∈

(0, τ1,2). Hence τ1,1 = −W (− 2
3e ). Also, for x ∈

[τ1,1, τ1,2], we have∫ τ1,2
x

r1(y)dy = x2 − 2x ln x
τ1,2
− 4

9

Finding τ2,2. For x ∈ [τ1,2, 1], let q(x) and r(x) be
functions such that

r(x) + 2
x

∫ 1

x
r(y)dy − 2

x

∫ 1

x
r1(y)dy = 2

q(x) + 1
x

∫ 1

x
r(y)dy − 1

x

∫ 1

x
r1(y)dy = x.

Solving the equations we get r(x) = 8x−8x lnx−6 and
q(x) = 5x − 4x lnx − 4. Since q(τ1,2) = − 8

3 ln 2
3 −

2
3 ≈

0.414573 > 0, the function r2(x) agrees with r(x) in
[τ1,2, 1]. Also, we have∫ 1

τ1,2
r2(y)dy = 4

3 + 16
9 ln τ1,2.

Now consider the case x ∈ [τ1,1, τ1,2]. Let q(x) and
r(x) be functions such that

r(x) + 2
x

∫ τ1,2
x

r(y)dy + 2
x

∫ 1

τ1,2
r2(y)dy

− 2
x

∫ 1

x
r1(y)dy = 2

q(x) + 1
x

∫ τ1,2
x

r(y)dy + 1
x

∫ 1

τ1,2
r2(y)dy

− 1
x

∫ 1

x
r1(y)dy = x.

Solving the equations we get r(x) = 4x lnx+ 4 ln x
τ1,2
−

(10 + 12 ln τ1,2)x+ 6 and q(x) = 2x lnx+ 2 ln x
τ1,2
− (4 +

6 ln τ1,2)x + 2. Setting q(x) = 0 we get x ≈ 0.517297 ∈
[τ1,1, τ1,2]. Hence τ2,2 ≈ 0.517297 is the solution of
x lnx + lnx − (2 + 3 ln 2

3 )x + 1 − ln 2
3 = 0. Then, in

[τ2,2, τ1,2], the functions r2(x) agree with r(x). Also, we
have ∫ τ1,2

τ2,2
r2(y)dy = − 4

3 −
16
9 ln τ1,2 + 6τ22,2 ln τ1,2

−2τ22,2 ln τ2,2 + 6τ22,2 − 4τ2,2 ln
τ2,2
τ1,2
− 2τ2,2.

Finding τ2,1. Note that q2|2(x) = 0 in [0, τ2,2]. For
x ∈ [τ1,1, τ2,2], let q(x) be a function such that

q(x) + 1
x

∫ τ2,2
x

q(y)dy + 1
x

∫ 1

τ2,2
r2(y)dy

− 1
x

∫ 1

x
r1(y)dy = 2− x.

Solving the equation we get q(x) = −(ln x
τ1,2

)2 +

(ln
τ2,2
τ1,2

)2+2 ln
τ2,2
τ1,2
−6τ2,2 ln τ1,2+2τ2,2 ln τ2,2−6τ2,2+4.

Since q(τ1,1) > 0, the function q2|1(x) = r2(x) agrees
with q(x) in [τ1,1, τ2,2]. Also, we have∫ τ2,2

τ1,1
r2(y)dy = 4τ2,2 ln

τ2,2
τ1,2
− 6τ22,2 ln τ1,2

+2τ22,2 ln τ2,2 − 6τ22,2 + 2τ2,2 − τ1,1(ln
τ2,2
τ1,2

)2

−2τ1,1 ln
τ2,2
τ1,2

+ 6τ1,1τ2,2 ln τ1,2 − 2τ1,1τ2,2 ln τ2,2

+6τ1,1τ2,2 − 2τ1,1 + τ1,1(ln
τ1,1
τ1,2

)2 − 2τ1,1 ln
τ1,1
τ1,2

.

Now consider the case x ∈ [0, τ1,1], where r1(x) = 0.
Let q(x) be a function such that

q(x) + 1
x

∫ τ1,1
x

q(y)dy + 1
x

∫ 1

τ1,1
r2(y)dy

− 1
x

∫ 1

τ1,1
r1(y)dy = 2− x.

Solving the equation we get q(x) = 2 lnx−2x+c, where
c is a constant defined as

c = −(ln
τ1,1
τ1,2

) + (ln
τ2,2
τ1,2

)2 + 2 ln
τ2,2
τ1,2
− 6τ2,2 ln τ1,2

+ 2τ2,2 ln τ2,2 − 6τ2,2 + 2τ1,1 − 2 ln τ1,1 + 4

= −(ln τ1,1)2 + 2 ln 2
3 ln τ1,1 + (ln τ2,2)2

− 2 ln 2
3 ln τ2,2 − 2τ2,2 + 4− 2 ln 2

3 ,

where the last equation follows from the definitions
of τ1,2, τ1,1 and τ2,2. Setting q(x) = 0 we get x =
−W (−e−c/2) ≈ 0.227788 ∈ (0, τ1,1). Hence τ2,1 =
−W (−e−c/2). The function q2,1(x) agrees with q(x) in
[τ2,1, τ1,1].
Calculating Primal Variables and Expected Pay-
off. Given thresholds τj,k’s, the primal variables can be
calculated using the following recursion. For 0 ≤ x <



τj,k, pj|k(x) = 0; for τj,k ≤ x ≤ 1,

pj|k(x) ={∫ x
0

1
y

∑K
`=1[p(j+1)|`(y)− pj|`(y)]dy, 1 ≤ j < J

1−
∫ x
0

1
y

∑K
`=1 pJ|`(y)dy, j = J.

For the (2, 2)-case, setting J = K = 2, we obtain
the following:

p2|1(x) =


τ2,1
x , x ∈ [τ2,1, τ1,1]
τ2,1
x , x ∈ [τ1,1, τ2,2]
τ2,1τ2,2
x2 , x ∈ [τ2,2, τ1,2]

τ2,1τ2,2
x2 , x ∈ [τ1,2, 1]

p1|1(x) =

τ1,1−τ2,1
x +

τ2,1
x ln x

τ1,1
, x ∈ [τ1,1, τ2,2]

τ1,1+τ2,1
x +

τ2,1
x ln

τ2,2
τ1,1
− 2τ2,1τ2,2

x2 , x ∈ [τ2,2, τ1,2]
2τ2,1τ2,2

x2 ln x
τ1,2

+
τ1,2(τ2,1+τ1,1)−2τ2,1τ2,2

x2

+
τ2,1τ1,2
x2 ln

τ2,2
τ1,1

, x ∈ [τ1,2, 1]

p2|2(x) =

{
τ2,1τ2,2
x2 , x ∈ [τ2,2, τ1,2]

τ2,1τ2,2
x2 , x ∈ [τ1,2, 1]

p1|2(x) =

2τ2,1τ2,2
x2 ln x

τ1,2
+

τ1,2(τ2,1+τ1,1)−2τ2,1τ2,2
x2 +

τ2,1τ1,2
x2 ln

τ2,2
τ1,1

,

x ∈ [τ1,2, 1]

The objective function of LP∞, which
is the expected payoff of the thresh-
old algorithm, can be rewritten as∑K
`=1

∫ 1

0

∑`
k=1

((
`−1
k−1
)
(1− x)`−k

)
xk−1

∑J
j=1 pj|k(x)dx,

where each integral for ` ∈ [K] is the probability that
the `-th best item overall is selected. For the (2, 2)-case,
the probabilities that the best and second best item are
selected are

p1 :=
∫ 1

0
(p2|1(x) + p1|1(x))dx

p2 :=∫ 1

0
[(1− x)(p2|1(x) + p1|1(x)) + x(p2|2(x) + p1|2(x))]dx,

respectively. In particular, for p2, we consider p
(1)
2 :=∫ 1

0
(1−x)(p2|1(x)+p1|1(x))dx and p

(2)
2 :=

∫ 1

0
x(p2|2(x)+

p1|2(x))dx, which are the probabilities that the second
best item is selected as a 1-potential and a 2-potential,
respectively. Substituting the functions pj|k’s and the
thresholds τj,k’s calculated above, we obtain the follow-
ing results:

p1 ≈ 0.555711, p
(1)
2 ≈ 0.240104,

p
(2)
2 ≈ 0.181441, p2 ≈ 0.421545.

4 Online 2-Item Auction with Random
Arriving Bids: Decisions Based Only
On Relative Merits Are Not Optimal

As mentioned in the introduction, the optimal threshold
algorithm for the classical (1, 1)-secretary problem also
achieves optimal ratio for the online 1-item auction
with random arriving bids. We investigate if observing
relative merits alone is enough to achieve optimal ratio
in general for K-item auction. We focus on K = 2, and
consider the continuous time model, where each item
arrives at an independent time in [0, 1].
Ratio Depends on Relative Weights. To see
why considering relative weights can do better than
observing just relative merits, consider the performance
ratio of the optimal (2, 2)-threshold algorithmA0, which
is ρ2,2 = p1+p2

2 , where p1 and p2 are the probabilities
that the best and the second best items, respectively,
are selected. By monotonicity and Lemma 2.4, we have
p1 ≥ p2; our calculation shows that the inequality is
actually strict. Suppose the largest weight is W1 and
the second largest is W2 (resolving ties consistently);
we abuse notation and also use W1 and W2 to refer to
the corresponding items. Hence, if α = W2

W1
, then the

performance ratio (by just looking at relative merits) is
at least p1+p2α

1+α , even if the weights of all other items are
zero. Notice this bound is minimized and achieves ρ2,2
when α = 1. This suggests that the adversary should
pick the weights such that α is close to 1. However, if
indeed this is the worst case, then the algorithm could
potentially filter out 2-potentials whose weight is not
large enough. Before we analyze this cat-and-mouse
game between an adversary and an algorithm, we first
see how an algorithm might use relative weights to its
advantage.
α-Filtering Threshold Algorithm. Given a param-
eter α ∈ [0, 1], the α-filtering threshold algorithm Aα is
a modification of the optimal threshold algorithm A0,
where there is one extra condition: the algorithm selects
an item only if its weight is at least α times the largest
weight seen so far. (Indeed, when α = 0, Aα is equiva-
lent to A0.) This rule has no effect if the arriving item is
a 1-potential, but it might filter out some 2-potentials.
Analyzing Threshold Algorithm A0. We first
analyze the behavior of A0 by rewriting the objective
function of LP∞(2, 2), which is the expected payoff of
the (2, 2)-secretary problem and can be solved exactly
by our techniques in Section 3.4.1:∑2

j=1

∑2
k=1

∫ 1

0

(∑K
`=k

(
`−1
k−1
)
(1− x)`−k

)
xk−1pj|k(x)dx

= p1 + p
(1)
2 + p

(2)
2 ,

where
• p1 :=

∫ 1

0

(∑2
j=1 pj|1(x)

)
dx ≈ 0.555711 is the



probability that W1 is selected.

• p(1)2 :=
∫ 1

0

(∑2
j=1 (1− x) · pj|1(x)

)
dx ≈ 0.240104

is the probability that W2 is selected as a 1-
potential.

• p(2)2 :=
∫ 1

0

(∑2
j=1 x · pj|2(x)

)
dx ≈ 0.181441 is the

probability that W2 is selected as a 2-potential.

• p2 := p
(1)
2 + p

(2)
2 ≈ 0.421545 is the probability that

W2 is selected.
Analyzing α-Filtering Threshold Algorithm. We
consider Aα for some α ∈ [0, 1].

Case W2

W1
< α. This is simple, because W2 will be

filtered out when considered as a 2-potential; hence, the

expected payoff is at least p1W1 + p
(1)
2 W2.

Case W2

W1
≥ α. W2 will pass the filter when it is

considered as a 2-potential; hence, the expected payoff
is at least p1W1 + p2W2 as before. However, in order to
get an improvement, we do a more careful analysis to
consider the probability p̂2 that the algorithm includes
an item with weight at least αW1 as a 2-potential.
Observe that this event includes W2 being selected as

a 2-potential, and so p̂2 ≥ p
(2)
2 . Hence, there is an

improvement in the expected payoff: p1W1 + p2W2 +

p̃αW1, where p̃ = p̂2 − p(2)2 ≥ 0.
Why Does Filtering Help? Intuitively, this offers
improvement because, if other items have weights less
than αW1, then they might be filtered out and this
increases the chance of W2 being selected. On the other
hand, if there are other items with weights at least αW1,
then they make a significant contribution to the payoff
if they are selected, as opposed to zero contribution
in the secretary case. We give a lower bound for the
probability p̂2 in the following lemma.

Lemma 4.1. (Power of Filtering) Suppose W2

W1
≥

α. The probability that algorithm Aα selects an item
with weight at least αW1 as a 2-potential is p̂2 ≥
0.208159. In particular, this implies that p̃ = p̂2−p(2)2 ≥
0.026718.

Proof. In the proof, we shall consider lower bounds for
the conditional probabilities of the form that a certain
quota Qj is still available at some time, given some
event. Since having more items can only make this
probability smaller, the infinite model is the worst case.

Recall that in A0 (and also in Aα), quota Q2 is used
before Q1, and τj,k is the time after which quota Qj
may be used for a k≥-potential. The optimal thresholds
τ2,1 ≤ τ1,1 ≤ τ2,2 ≤ τ1,2 are calculated exactly by
our techniques in Section 3.4.1, and we also obtain the
optimal solution pj|k(x)’s.

We analyze disjoint events, each of which implies
the event in question. Hence, the sum of their probabil-
ities gives a lower bound.

a. W1 arrives in [0, τ2,1] and W2 arrives in [τ2,2, 1].
In this case, there must exist some item arriving in
[τ2,2, 1] that has weight at least αW1 and is selected
as a 2-potential. The probability is τ2,1(1− τ2,2).

b. In the following events, W1 arrives after τ2,1, and
hence they are disjoint from the case above. In
these cases, quota Q1 is used for the 2-potential
with weight at least αW1.

b1. W1 arrives in [τ2,1, τ1,1] and W2 arrives in
[τ1,2, 1]. This happens with probability (τ1,1−
τ2,1)(1− τ1,2).

b2. (i) W1 arrives in [τ1,1, τ2,2], (ii) Q2 is still
available when W1 arrives and (iii) W2 arrives
in [τ1,2, 1]. Events (i) and (ii) ensure that
quota Q1 is still available after time τ2,2, and
event (iii) ensures that there is some item
(such as W2) that can pass the filter. Event
(iii) happens with probability (1−τ1,2), which
is independent of the first two events in the
infinite model.

We compute the probability that (i) and
(ii) happen. Suppose W1 arrives at some
y ∈ [τ1,1, τ2,2], then we require the largest-
weighted item in [0, y) arrive before τ2,1, which
happens with probability

τ2,1
y . Hence, the first

two events happen with probability given by
the integral

∫ τ2,2
τ1,1

τ2,1
y dy.

b3. (i) W1 arrives in [τ2,2, τ1,2], (ii) Q2 is still
available when W1 arrives and (iii) W2 arrives
in [τ1,2, 1]. This case is similar to (b2),
except that if W1 arrives at y ∈ [τ2,2, τ1,2],
among items arriving in [0, y), we require the
best item arrive before τ2,1 and the stronger
condition that the second best arrive before
τ2,2, i.e, we exclude the case that a 2-potential
could arrive in [τ2,2, y) but is filtered. This
ensures that Q1 is still available at time τ1,2.
Events (i) and (ii) happen with probability
at least

∫ τ1,2
τ2,2

τ2,1τ2,2
y2 , and as before, event

(iii) happens independently with probability
(1− τ1,2).

b4. (i) W1 arrives in [τ1,2, 1], (ii) Q2 is still avail-
able when W1 arrives, and (iii) W2 arrives af-
ter W1. Conditioning on W2 arriving at x ∈
[τ1,2, 1], and W1 arriving at y ∈ [τ1,2, x], using
the same analysis as in (b3), the conditional
probability that Q2 is still available at time y
is at least

τ2,1τ2,2
y2 . Hence, the probability for

this case is at least
∫ 1

τ1,2

∫ x
τ1,2

τ2,1τ2,2
y2 dydx.



Hence, summing the above probabilities, we have

p̂2 ≥ τ2,1(1− τ2,2) + (1− τ1,2)
(
τ1,1 − τ2,1 +

∫ τ2,2
τ1,1

τ2,1
y dy

+
∫ τ1,2
τ2,2

τ2,1τ2,2
y2 dy

)
+
∫ 1

τ1,2

∫ x
τ1,2

τ2,1τ2,2
y2 dydx.

Substituting values for optimal thresholds τ2,1, τ1,1, τ2,2

and τ1,2, we have p̂2 > 0.208159 and p̃ := p̂2 − p(2)2 >
0.026718.

Picking a Suitable Filter α. If α is too large, then the
adversary can choose W2 to be just below the threshold
to cause the algorithm to filter W2 out as a 2-potential.
On the other hand, if α is too small, then the benefit of
filtering would be insignificant. We show how to pick a
suitable value for α.

Theorem 4.1. (Optimal Aα Beats A0) For α =
0.25289, for the online 2-item auction, the filtering
threshold algorithm Aα has a performance ratio of at
least 0.492006, which is strictly larger than ρ2,2 ≈
0.488628, the ratio of algorithm A0, whose decisions are
based on relative merits.

Proof. Consider a filtering threshold algorithm Aα for
some α ∈ [0, 1]. There are two situations for the worst
case.

(1) The ratio W2

W1
is below α, causing Aα to miss

W2 as a 2-potential. In this case, the performance ratio

is
p1W1+p

(1)
2 W2

W1+W2
≥ p1+p

(1)
2 α

1+α , where the worst case is that
W2

W1
approaches α from below.

(2) The ratio W2

W1
is above α, in which case the per-

formance ratio is at least p1W1+p2W2+p̃αW1

W1+W2
≥ p1+p2+p̃α

2 ,
where the worst case is when W1 = W2.

Hence, it suffices to choose α to maximize

min{p1+p
(1)
2 α

1+α , p1+p2+p̃α2 }. When α = 0.25289, the mini-
mum is at least 0.492006, as required.

5 General Transformation from Secretary to
Matching

In online bipartite matching, the offline nodes can have
different capacities. We call this problem edge-weighted
online bipartite K-matching, where each offline node
r has a capacity Kr. Theorem 1.5 is implied by the
following result.

Theorem 5.1. (Applying Secretary to Match-
ing with Non-uniform Capacities) For the online
bipartite K-matching with offline nodes set R, any col-
lection of monotone algorithms Ar for the (Kr,Kr)-
secretary problem can be transformed into an algorithm
Â for the matching problem such that the performance
ratio of Â is the minimum of performance ratios of

Ar over r ∈ R. In particular, the optimal (Kr,Kr)-
threshold algorithms induce a deterministic algorithm
with performance ratio at least 1 − O( 1√

Kmin
), where

Kmin = minr∈RKr.

Given a collection of monotone algorithms Ar for
the (Kr,Kr)-secretary problem, we construct an algo-

rithm Â for the online bipartite K-matching, where we
can imagine that each offline node r runs its (Kr,Kr)-
secretary algorithm Ar to decide whether to select an
online node. Observe that the z values are determined
by the recursion in Lemma 2.3. The monotone property
will be needed in the performance analysis.

Algorithm Â for the online K-matching problem
Input: Graph G = (L ∪ R,E) with edge weight w,
economical (Kr,Kr)-secretary algorithms Ar for all
r ∈ R
Let M := ∅, R̂ := ∅ and L0 := ∅.
For each node r ∈ R, make Kr copies r1, . . . , rKr of
r and add them to R̂.
For the i-th online node v ∈ L:

Let Ê := ∅.
Compute zrj|k(i) with respect to Ar for each

r ∈ R, j ∈ [Kr] and k ∈ [Kr] according to
Lemma 2.3.
Let γrk(i) :=

∑Kr
j=1 z

r
j|k(i) for r ∈ R and k ∈ [Kr].

Let Li := Li−1 ∪ {v}.
For each v′ ∈ Li and r ∈ R, if {v′, r} is an edge
in G, then for each k ∈ [Kr], add an edge {v′, rk}
with weight ŵv′,rk := γrk(i) · wv′,r to Ê.
Find a maximum weight (1-)matching Mi on the

graph (Li ∪ R̂, Ê) with respect to ŵ.
If v is matched to some rk in Mi:

Let j be the remaining capacity of r after
matching nodes in M .
If Air(j, k) = 1, then add edge {v, r} to M .

Output: A K-matching M .

For the i-th online node v ∈ L, if v is matched to rk

in Mi, then we say v and r are partners of each other
in Mi, and {v, rk} is a potential k edge in Mi. The
following property is useful in our analysis.

Fact 5.1. For any real numbers x1 ≥ · · · ≥ xK and
y1 ≥ · · · ≥ yK , we have∑K

k=1 xkyk ≥
1
K

∑K
k=1 xk ·

∑K
k′=1 yk′ .

Lemma 5.1. (Coupling Between Matching and
Secretary) Suppose the i-th online node vi is matched
to some rk in Mi for some r ∈ R and k ∈ [Kr]. Then,
the edge {v, r} is added to M with probability at least
γrk(i), where γrk(i) is the probability that Ar makes a
selection at step i, given that a k-potential arrives.



Proof. We denote A := Ar, K := Kr and γ := γr. For
ι ∈ [i], let vι be the online node that arrives at step ι.
Conditioning on Li and vi. As argued in [12], we
condition on the set Li and node vi and show that the
remaining randomness of the relative order among nodes
in Li−1 is enough to give the desired lower bound on the
probability.
Potential Sequence. For ι ∈ [i], if node vι is matched
to rk in Mι for some k ∈ [K], then we say that r observes
potential k at step ι, otherwise r observes potential ⊥.
From the hypothesis, r observes potential k at step i.
Suppose σ0 ∈ [K∗]i−1 is the potential sequence observed
by node r in the first i − 1 steps. It follows that the
remaining capacity of r at the beginning of step i is
determined from σ0 by algorithm A.

Consider a potential sequence σ1 ∈ [K∗]i−1 ob-
served by an economical algorithm in the first i−1 steps
in the (K,K)-secretary problem.
Coupling. The crucial step in the proof is to set up a
coupling between σ0 and σ1 such that for any ι < i, if
σ0(ι) = k for some k ∈ [K], then σ1(ι) = k.

Observe that when an economical algorithm is run
on two such potential sequences σ0 and σ1, at the
beginning every step ι ≤ i, the remaining capacity in
σ0 is at least the number of remaining quotas in σ1.
This can be proved by induction on ι, where the base
case ι = 1 is trivial. For the inductive step, suppose the
claim is true at the beginning of step ι. The capacity
of r can decrease at step ι only if σ0(ι) ∈ [K], in which
case σ1(ι) = σ0(ι). Hence, if the remaining capacity is
the same as the number of remaining quotas, then both
quantities remain the same after step ι; otherwise, if
the remaining capacity is strictly larger, then even if it
is decreased by 1, the conclusion still holds after step ι.

Hence, it follows that at the beginning of step i, the
remaining capacity at r after observing σ0 is at least the
number of remaining quotas after observing σ1. Hence,
by the monotonicity of A, r is matched to vi in σ0, if a
selection is made at step i after observing σ1, given that
a k-potential arrives. This gives the required bound on
the probability. We next set up the required coupling
to complete the proof.
Backward Analysis. As in [12], we consider a
backward randomized procedure. Suppose the potential
sequences σ0 and σ1 have already been determined from
step ι+ 1 to i− 1, during which the identities of nodes
vι+1 to vi−1 have been revealed, and we now perform
sampling at step ι to determine the identity of vι.

An important property of random permutation is
that given the potential sequence σ1[ι + 1..i − 1], the
distribution of σ1[1..ι] does not change. Hence, setting
κ = min{K, ι}, for k ∈ [κ], it follows that σ1(ι) = k with
probability 1

ι , and σ1(ι) = ⊥ with probability 1− κ
ι .

Another consequence is that by the monotonicity of
A, zj|1(ι) ≥ zj|2(ι) ≥ · · · ≥ zj|K(ι), which implies that
γ1(ι) ≥ γ2(ι) ≥ · · · ≥ γK(ι). Since Mι is a maximum

weight matching in (Lι ∪ R̂, Ê) with respect to ŵ, it
follows that there exists ` ≤ κ such that r1, r2, . . . , r`

are matched in Mι, but r`+1, . . . rK are not. Hence, by
using the randomness to reveal the identity of vι, we
see that for k ∈ [`], σ0(ι) = k with probability 1

ι , and

σ0(ι) = ⊥ with probability 1− `
ι .

This readily gives a way to form the coupling. First,
generate σ1(ι) as described above. If σ1(ι) ∈ [`], then set
σ0(ι) := σ1(ι), otherwise set σ0(ι) := ⊥. This completes
the construction for the coupling argument and also the
proof of Lemma 5.1.

Lemma 5.2. (Local Performance) Let OPT be the
weight of an optimal K-matching in the graph fixed by
the adversary. Let ρ∗ be the minimum performance ratio
of Ar over r ∈ R. Then, the expected payoff is at least
ρ∗ · OPT.

Proof. Recall that Mi is a maximum weight 1-matching
in Gi := (Li ∪ R̂, Ê) with respect to ŵ. (We suppress

the dependence on i in Ê without risk of ambiguity.)
Moreover, M is the final matching returned by the
algorithm.
Conditioning on Li. Conditioning on Li, the match-
ing Mi is determined. We consider the randomness of
the node vi among Li to arrive at step i. Let ei be the
edge matching vi in Mi if vi is matched, and a dummy
edge of weight 0 otherwise.

For r ∈ R and k ∈ [Kr], let erk be the edge
matching rk in Mi if rk is matched, and a dummy
edge of weight 0 otherwise. Note that for each
e ∈ Mi, Pr[ei = e |Mi] = 1

i . From Lemma 5.1,
Pr[vi matched in M | ei = erk,Mi] ≥ γrk(i). Hence, the
expected payoff from vi (conditioning on Li) is∑

r∈R
∑Kr
k=1 werk · Pr[ei = erk ∧ vi matched in M |Mi]

=
∑
r∈R

∑Kr
k=1 werk · Pr[ei = erk |Mi]

· Pr[vi matched in M | ei = erk,Mi]

≥ 1
i

∑
r∈R

∑Kr
k=1 werk · γ

r
k(i)

= 1
i

∑
r∈R

∑Kr
k=1 ŵerk = 1

i · ŵ(Mi).

Comparing with Offline Optimal M∗. Let M∗ be
an offline optimal K-matching in the adversary graph G.
Given Li, we shall construct a 1-matching M∗i in Gi. By
the choice of Mi, we have ŵ(Mi) ≥ ŵ(M∗i ). Hence, it
suffices to define such an M∗i and give a lower bound
for the expectation of its weight with respect to ŵ.

Given Li, we first consider the induced matching
M∗[Li] obtained by keeping only online nodes in Li.
We form a 1-matching M∗i in Gi in the following way.



For each offline node r, suppose that its degree in
M∗[Li] is 1 ≤ κ ≤ Kr; if it has degree 0, then it is
not matched in M∗i . Sort the edges in non-increasing
order of weights (which were given by the adversary):
ω1 ≥ ω2 ≥ · · · ≥ ωκ (where ties are resolved consistently
using the identities of nodes for instance) such that
edge {uk, r} ∈ M∗[Li] has weight ωk. For k ∈ [κ],
include {uk, rk} in M∗i , in which case we say that edge
{uk, r} ∈ M∗ becomes a potential-k edge {uk, rk} in
M∗i . Define M∗i [r] := {{uk, rk} : k ∈ [κ]} ⊂ M∗i , and
M∗[r] to be the set of edges incident to r in M∗.

Analyzing ŵ(M∗i ). Fix r ∈ R. It suffices to com-
pare the expectation E[ŵ(M∗i [r])] with w(M∗[r]). Sup-
pose the weights of edges in M∗[r] is w1 ≥ w2 ≥ · · · ≥
wKr (where ties are resolved consistently). Suppose the
degree of r in M∗ is κ. For convenience of notation, if
κ < Kr, then for l > κ, we have wl := 0, and hence, all
terms with index l > κ are multiplied by zero.

For ` ∈ [κ], observe that the edge e` ∈ M∗ with
weight w` is included in M∗i with probability i

n . Now,
it is useful to recall the quantities δ, γ, β defined in
Lemma 2.2. For k ∈ [`], δk|`(i) is exactly the conditional
probability that edge e` becomes a potential-k edge in
M∗i , given that e` is included in M∗i . Recall that if
edge e` becomes a potential-k edge in Gi, its weight is
multiplied by γrk(i) in ŵ. It follows that E[ŵ(M∗i [r])] =
i
n

∑
`∈[Kr]

∑
k∈[`] δk|` · γrk(i) · w` = i

n

∑
`∈[Kr] β`(i) · w`,

where β`(i) :=
∑`
k=1 δk|l(i) · γrk(i).

From Lemma 2.4, β`(i) is non-increasing in `, and so
is w`. By Fact 5.1,

∑
`∈[Kr] β`(i)·w` ≥

1
Kr

∑
`∈[Kr] β`(i)·∑

`∈[Kr] w` = 1
Kr

∑
`∈[Kr] β`(i) · w(M∗[r]). Hence

E[ŵ(M∗i [r])] ≥ i
Krn

∑
`∈[Kr] β

r
` (i) · w(M∗[r]).

Wrapping Up. Observe that each Ar has perfor-
mance ratio 1

Krn

∑n
i=1

∑
`∈[Kr] β

r
` (i) ≥ ρ∗. Hence, the

expected payoff of Â is at least∑n
i=1

1
i ·E[ŵ(Mi)] ≥

∑n
i=1

1
i

∑
r∈R E[ŵ(M∗i [r])]

≥
∑n
i=1

∑
r∈R

1
Krn

∑
`∈[Kr] β

r
` (i) · w(M∗[r])

=
∑
r∈R w(M∗[r]) · 1

Krn

∑n
i=1

∑
`∈[Kr] β

r
` (i)

≥
∑
r∈R w(M∗[r]) · ρ∗ = ρ∗ · OPT. �

Proof of Theorem 5.1 (Performance Ratio):
Since the optimal (k, k)-threshold algorithm has ratio
ρk,k ≥ 1 − O( 1√

k
), it follows that, if each Ar is the

optimal (Kr,Kr)-threshold algorithm, then algorithm

Â has a ratio at least ρ∗ ≥ 1−O( 1√
Kmin

), where Kmin =

minr∈RKr, completing the proof of Theorem 5.1.
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