
Efficient Online Coflow Routing and Scheduling

Yupeng Li1,2
†

Shaofeng H.-C. Jiang1
†

Haisheng Tan2
∗

Chenzi Zhang1
†

Guihai Chen3 Jipeng Zhou2 Francis C.M. Lau1

1 the University of Hong Kong (HKU), Pokfulam, Hong Kong
2 Jinan University (JNU), Guangzhou, China

3 Shanghai Jiao Tong University (SJTU), Shanghai, China

ABSTRACT
A coflow is a collection of related parallel flows that occur
typically between two stages of a multi-stage compute task
in a network, such as shuffle flows in MapReduce. The coflow
abstraction allows applications to convey their semantics
to the network so that application-level requirements (e.g.,
minimizing the completion time of the slowest flow) can be
better satisfied. In this paper, we study the routing and
scheduling of multiple coflows to minimize the average coflow
completion time (CCT). We first propose a rounding-based
randomized approximation algorithm, called OneCoflow, for
single coflow routing and scheduling. The multiple coflow
problem is more challenging as coexisting coflows will com-
pete for the same network resources such as link bandwidths.
To minimize the average CCT, we derive an online multiple
coflow routing and scheduling algorithm, called OMCoflow,
and prove that it has a reasonably good competitive ratio.
To the best of our knowledge, this is the first online algorith-
m with theoretical performance guarantees which consider-
s routing and scheduling simultaneously for multi-coflows.
Compared with existing methods, OMCoflow runs more ef-
ficiently, and it avoids the problem of frequently rerouting
the flows. Extensive simulations on a Facebook data trace
show that OMCoflow outperforms the state-of-the-art heuris-
tic schemes significantly (e.g., reducing the average CCT by
up to 41.8% and the execution time by up to 99.2% against
RAPIER [28]).

CCS Concepts
•Networks → Network protocol design; Network re-
sources allocation; •Theory of computation → Net-
work optimization;

∗Contact H. Tan at hstan.hku@gmail.com.
†Part of the work was done when they were visiting at JNU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiHoc’16, July 04-08, 2016, Paderborn, Germany
c© 2016 ACM. ISBN 978-1-4503-4184-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2942358.2942367

Keywords
Coflow; Routing and scheduling; Online algorithm; Data
Center Networks

1. INTRODUCTION
Distributed computing frameworks such as MapReduce

[14], Dryad [22] and Spark [26] are very popular among cloud
applications. In these frameworks, data flows for one job
may share a common performance goal, such as minimiz-
ing the completion time of the slowest flow. However, such
application-level requirements are often largely overlooked
when cloud providers aim at optimizing network-level met-
rics such as the (individual) flow completion time.

The coflow abstraction was first proposed in [10] to bridge
the above gap, which is defined as a group of parallel flows
that are related and that come about typically between two
stages of a job (i.e. shuffle flows in MapReduce). To im-
prove application-level performance, other than individual
flows, coflows should be considered such that job-specific re-
quirements could be better satisfied. Take MapReduce tasks
as an example. Generally, a reduce job cannot start before
its shuffle flows are all completed. Thus, we can treat these
correlated flows as a coflow, and try to minimize the max-
imum completion time among these flows, which is called
the coflow completion time (CCT). Furthermore, in many
situations, multiple coflows could coexist in a network, i.e.,
the newly coming ones and the existing ones that have not
finished their transmission. Therefore, we take the aver-
age coflow completion time (average CCT) as a performance
metric in this paper, similar to [10, 11, 12, 13, 15, 24, 27,
28]. As coexisting coflows will compete for the communi-
cation resources (e.g., routing paths and link bandwidth),
multiple coflow scheduling and routing is challenging.

Most previous works on network-level optimization were
agnostic on the existence of coflows (e.g., [5, 8, 7, 19]), which
actually could harm the application-level performance (ex-
amples can be found in [10, 13, 11]). Here, we focus on
coflow-aware results; we list the state-of-the-art research
outputs in Table 1.

Some papers [10, 11, 12, 13, 24, 27, 9, 23] studied coflow
scheduling only. Varys [13] proposed effective heuristics to
schedule coflows aiming at minimizing the average CCT and
meeting coflow deadlines. Qiu et al. [24] proposed the first
deterministic algorithm with a constant approximation ratio
for multiple coflow scheduling. Their algorithm was based
on an offline model which is not so practical, which assumes
the information of all the coflows was given at the beginning.
Chen et al. [9] designed a new utility optimal scheduler for

coflows, which defined different levels of sensitivity regard-
ing completion time for different coflows. Without prior
knowledge of coflows, Aalo [11] adopted Discretized Coflow-
Aware Least-Attained Service (D-CLAS) to separate coflows
into priority queues based on the amounts they have already
sent. Dogar et al. [15] and Luo et al. [23] investigated the
decentralized coflow-aware scheduling problem. CODA [27]
was the first work to recognize coflows among individual
flows using machine learning techniques. An error-tolerant
coflow scheduler was then proposed and implemented.

Without considering flow routing, scheduling-only coflow
transmission approaches may fail to minimize the CCT (such
examples can be found in [28]). RAPIER [28] was the first
publication (and the only one so far to the best of our
knowledge) that considered coflow routing and scheduling
simultaneously. However, their solution for multiple coflows
was heuristics-based and hence lack theoretical performance
guarantees on minimizing the average CCT. The multiple
coflow routing and scheduling problem is challenging due
to: 1) routing and scheduling the flows of a single coflow to
minimize the CCT is NP-hard [16]; 2) more than one coflow
in the network might concurrently compete for the trans-
mission resources (such as the link capacity); and 3) in most
practical scenarios imaginable, we do not have the informa-
tion about the future coflows, and hence an online solution
is called for. In this paper, we provide new solutions to the
multi-coflow routing and scheduling problem. We start with
single coflow routing and scheduling, and then propose an ef-
ficient online multiple coflow routing and scheduling scheme
with a theoretical performance guarantee. Specifically, we
have the following contributions:

• For single coflow routing and scheduling, we propose a
randomized algorithm, called OneCoflow, to minimize
the CCT with an approximation ratio of 4 ln 2n with
high probability, where n is the number of nodes in the
network (Sec. 3).

• We derive an online algorithm, called OMCoflow, to
solve the multiple coflow routing and scheduling prob-
lem (Sec. 4). We show that OMCoflow has a good com-
petitive ratio in minimizing the average CCT of the
coflows. To the best of our knowledge, this is the first
result for online multi-coflow routing and scheduling
with theoretical performance guarantees.

• Compared with existing heuristic approaches (e.g.,
RAPIER [28]), OMCoflow can run much more efficient-
ly. More importantly, OMCoflow routes each flow in
the coflows only once while RAPIER would frequently
reroute all the flows in the network when a new coflow
arrives or an existing coflow finishes transmission.

• We conducted extensive simulations using a real-world
data trace collected from Facebook (also adopted in
[11, 13]). Compared to RAPIER, OMCoflow reduces
the average CCTs by 41.8% (11.7% at the 95th per-
centile), and dramatically reduces the algorithm’s ex-
ecution time by up to 99.2% (Sec. 5).

Organization: The rest of the paper is organized as follows.
We first present the system model and problem formulation
in Sec. 2. In Sec. 3, we study the single coflow routing
and scheduling, and derive a randomized approximation al-
gorithm called OneCoflow. We propose an online algorithm

called OMCoflow for the multiple coflow routing and schedul-
ing problem in Sec. 4. Extensive simulations are in Sec. 5.
Finally, we conclude this work and point out some future
work in Sec. 6.

2. MODEL AND PROBLEM DEFINITIONS

2.1 System Model
A network is modeled as a directed graph G = (V,E),

where E is the edge set and V is the node set. The network
size is denoted as n = |V |. In data center networks (DCNs),
each node v ∈ V can be a server or a switch. Each edge
e ∈ E has capacity Re.

A coflow is a collection of related parallel flows with a
common performance goal (e.g. to minimize the maximum
flow completion time). Denote Ci (1 ≤ i ≤ m) as the coflow
arriving at time Ti, which contains ωi individual flows. A
flow j (1 ≤ j ≤ ωi) within a coflow Ci is defined by a
3-tuple (sj , tj , vj) ∈ Ci, where sj , tj ∈ V are the source
and destination nodes, and vj > 0 is the flow volume. The

available path set for flow j in coflow Ci is denoted as P
(i)
j .

Generally, the number of paths for a pair of nodes in the
network can be as large as O(n!). However, for networks
with specific structures (e.g. Fat tree [3] and VL2 [18]),
the data flow between two nodes would follow some given
paths. Therefore, in this paper, we assume the number of
paths between any pair of nodes is bounded by K = poly(n).
Without loss of generality, we assume that a coflow Ci has

all the information about its flows and starts transmission
as soon as it arrives at the network at time Ti, similar to
[10, 5, 12, 15, 13, 28]. At time x ≥ Ti, a flow (sj , tj , vj) ∈ Ci

is then forced to be routed on a path p
(i)
j (x) ∈ P

(i)
j with a

rate b
(i)
j (x), which is in fact the bandwidth assigned to this

flow at that time. Note that b
(i)
j (x) can be zero for some

time x’s, which means this flow is waiting for transmission.
Therefore, a routing and scheduling strategy for a coflow Ci

is defined as1

Si := {p(i)j (x), b
(i)
j (x)}ωi

j=1.

A time-slotted system is considered. We then define the
coflow completion time (CCT) Fi for coflow Ci to be the
minimum time such that

Ti+Fi∑

x=Ti

b
(i)
j (x) ≥ v

(i)
j , for all 1 ≤ j ≤ ωi,

which means the earliest time that all the flows in Ci finish
transmitting their data. We further define the total CCT
for all the coflows as F =

∑m
i=1 Fi.

Since frequent flow reroutings will lead to severe coordina-
tion overhead, which is not desirable in practice, therefore,
in our model, each coflow (and therefore each of its flows) is
allowed to be routed only once2. We say {Si}mi=1 is a valid
strategy, if for all x ≥ 0, for all e ∈ E,

m∑

i=1

ωi∑

j=1

I(e ∈ p
(i)
j) · b(i)j (x) ≤ Re.

1In this paper, we denote a set {a1, a2, . . . , an} as {ai}ni=1.
2Therefore, each flow will be transmitted along exactly one
path, while the bandwidth assigned may be changed from
time to time.

Table 1: Comparison of Research Outputs Related to Coflows

Solution Scheduling Routing Coflow-aware Online Performance Guarantee

Hedera [4], D3 [25], PDQ [20], etc. � � � � �

pFabric [5], etc. � � � � �

Orchestra [12], Varys [13], Baraat [15], Luo
et al. [23], Aalo [11], CODA [27]

� � � � �

Qiu et al. [24], Chen et al. [9], � � � � �

RAPIER [28] � � � � �

OMCoflow [this work] � � � � �

Here, I(χ) = 1 if event χ is true and I(χ) = 0 otherwise.
That is to say, for a valid strategy, at any time the sum of
the bandwidth requirements on any link cannot exceed its
link capacity.

2.2 Problem Definition
With the above settings, we define the Online Multiple

Coflow Routing and Scheduling Problem as follows.

Problem 1. In a network, m coflows C1, C2, . . . , Cm ar-
rive at time T1, T2, . . . , Tm. The information of every coflow
Ci := {(sj , tj , vj)}ωi

j=1 is given at arrival including the corre-
sponding source-destination pair, the volume, and the avail-

able paths P
(i)
j of each of the ωi individual flows. The prob-

lem is to design an algorithm to find a valid routing and
scheduling strategy {Si}mi=1 for each coflow so that the aver-
age completion time of the coflows, F

m
, is minimized.

In our multi-coflow routing and scheduling problem, infor-
mation about future coflows is not known. Therefore, an
online algorithm is desired. In the following, we start with
investigating a special case where there is only one single
coflow in the network (i.e., m = 1). Then, based on the
single coflow scheduling and routing solution, we propose an
online algorithm to tackle the problem of multiple coflows.

3. SINGLE COFLOW ROUTING AND
SCHEDULING

In this section, we consider the special case where there
is only one coflow C := {(sj , tj , vj)}ωj=1 in the network.
According to the above, for each flow j ∈ C, the source-
destination pair, the volume, and the available paths Pj are
given. The capacity for each edge e is Re. Our goal is to find
a valid strategy for C with the minimum coflow completion
time (CCT).

3.1 Approximation Algorithm
In the following, we derive a randomized algorithm for the

single coflow routing and scheduling problem, which runs in
polynomial time to the number of nodes n and returns a
valid strategy with CCT that is at most 4 ln 2n times the
optimal solution with high probability.

The main technique used in our algorithm is convex pro-
gramming and rounding. We first use Program P to cap-
ture the problem. But as we shall see later, Program P
is not convex and not efficiently solvable. We resolve the
issue by using a binary search based approach to tackle Pro-
gram P efficiently. However, even we have the solution for
Program P, it does not give a routing and scheduling strat-
egy directly. Therefore, we need another procedure, which
is usually called rounding, to get a valid strategy.

The whole algorithm that combines all these ingredients
is given in Algorithm 1, named as OneCoflow. We introduce
the details by first describing Program P:

minimize t (P)

subject to

ω∑

j=1

bj
∑

p∈Pj

I(e ∈ p) · xj,p ≤ Re, e ∈ E, (P.a)

xj,p = 0, if ∃e ∈ p, bj > Re, (P.b)
∑

p∈Pj

xj,p = 1, 1 ≤ j ≤ ω, (P.c)

0 ≤ xj,p ≤ 1, p ∈ Pj , 1 ≤ j ≤ ω,
(P.d)

bjt = vj , 1 ≤ j ≤ ω. (P.e)

In this program, variable t denotes the CCT of C. We use
variable xj,p to denote whether we choose path p for the j-th
flow, which is intended to be an integer variable in {0,1} but
relaxed to be a real number. Variable bj denotes the average
bandwidth of the j-th flow, which is defined by the last con-
straint (P.e). The constraint (P.a) captures the requirement
of a valid strategy. Furthermore, we include the constraint
(P.b) in the program in order to reduce the integrality gap
and the rounding algorithm can benefit from it. Constraint
(P.c) is intended to ensure each flow get routed along exact-
ly one path. The fact that Program P is a relaxation of our
problem will be fromally proved in Lemma 1.

We then give OneCoflow (Algorithm 1) to solve the sin-
gle coflow routing and scheduling with the minimum CCT.
OneCoflow starts with the optimal solution of Program P

Algorithm 1: OneCoflow: Single Coflow Strategy

Input: Coflow C := {(sj , tj , vj)}ωj=1, {Pj}ωj=1

Output: A valid strategy for C
1 Let (b, x, t) be an optimal solution of Program P on C.
2 for j = 1, 2, . . . , ω do
3 Set pj = p′ with probability xj,p′ , for p

′ ∈ Pj .

4 Let α ≥ 1 be the smallest real number such that

{pj , bj
α
}ωj=1 is a valid strategy.

5 Return {pj , bj
α
}ωj=1.

(Line 1). Then in the for loop, OneCoflow finds paths for
each flow in C independently. For each j, we sample a path
p′ for it with probability xj,p′ . In the end, we rescale the
bandwidth to make sure the strategy is valid (Line 4). Note
that in our model (Sec. 2.1), the bandwidth is a function of
time, but OneCoflow returns a constant value (Line 5). This
implies that, for flow j, the bandwidth function is equal to

bj
α

when transmitting the corresponding flow, and is equal
to zero after the completion of the corresponding flow.

3.2 Analysis
As stated above, in some important scenarios such as da-

ta center networks, we assume that the number of paths
between any pair of nodes is bounded by K = poly(n).

Theorem 1. For any coflow C := {(sj , tj , vj)}ωj=1 that
is defined on a directed graph G with n vertices such that
maxj:1≤j≤ω |Pj | = KC , OneCoflow (Algorithm 1) runs in
O(LP(O(ωKC), O(ωKC + n2))) and gives a valid strategy
with CCT at most 4 ln 2n times the optimal CCT of C with
probability at least 3

4
, where LP(x, y) denotes the time com-

plexity of solving a linear program with x variables and y
constraints3.

Proof. Our proof contains three parts: 1) we first give
a lower bound of the minimum CCT of C in Lemma 1; 2)
then we give an upper bound of the CCT of the strategy
returned by our algorithm OneCoflow in Lemma 2; and 3)
we address the time complexity in the end.
1) Lower Bound of the Optimal CCT: We will prove
that P is a relaxation of our single coflow routing and schedul-
ing problem. Let OPTP denote the optimal objective of P ,
and let OPT denote the minimum completion time of C.
The fact of relaxation implies that OPTP ≤ OPT.

Lemma 1 (P is a relaxation). For any valid strate-
gy S := {(pj , bj)}ωj=1 for C, there exists a feasible solution of
P whose objective value in P is the same as the completion
time of S.

Proof. Suppose T is the completion time of S. We define
a solution of P as follows.

• Set t = T .

• For 1 ≤ j ≤ ω, set xj,pj = 1, and set xj,p′ = 0 for all
p′ such that p′ ∈ Pj and p′ �= pj .

• For 1 ≤ j ≤ ω, set bj =
vj
T
.

Observe that it only remains to verify that constraint (P.a)

ω∑

j=1

bj
∑

p∈Pj

I(e ∈ P) · xj,p ≤ Re,

for e ∈ E. By the definition of the completion time, we have∑T
0 bj(x) ≥ vj . This implies that

bj =
vj
T

≤
∑T

0 bj(x)

T
.

On the other hand, by the fact that S is a valid strategy and
by the definition of validness, for all e, we know that

ω∑

i=1

I(e ∈ pj)
T∑

0

bj(x) ≤ TRe.

Therefore, we get

ω∑

j=1

bj
∑

p∈Pj

I(e ∈ p) · xj,p ≤
∑ω

j=1 I(e ∈ pj)
∑T

0 bj(x)

T
≤ Re.

This implies the Lemma.
3A linear program is polynomial solvable, and is very fast
in most cases. In addition, here we can boost the success
probability of our algorithm by running it multiple times.

2) Upper Bound of our CCT: The solution for P is not
directly a strategy, and we need to construct one from it.
This procedure is usually called rounding. Moreover, since
the rounding is randomized, it is important to guarantee
that our algorithm performs well with a high probability.

Lemma 2. Algorithm 1 returns a strategy with completion
time at most 4 ln 2n times the minimum completion time of
C with probability at least 3

4
.

Proof. For e ∈ E, define

αe :=

∑ω
j=1 I(e ∈ pj) · bj

Re
.

Then, α = maxe αe. It is sufficient to prove that

Pr[α > 4 ln 2n] ≤
∑

e∈E

Pr[αe > 4 ln 2n]

≤ 1

4n2
· n2 =

1

4

by the union bound, and this completes the proof.
Next, we fix e and focus on the proof of Pr[αe > 4 ln 2n] ≤

1
4n2 . Define random variable Xj := I(e ∈ pj) · bj , and X :=∑ω

j=1 Xj . Note that we have the following properties.

• All Xj ’s are independent.

• Xj is either 0 or bj , and

Pr[Xj = bj] =
∑

p∈Pj

I(e ∈ p) · xj,p.

• E[X] =
∑ω

j=1 bj ·
∑

p∈Pj
I(e ∈ p) · xj,p ≤ Re, by the

constraint (P.a) of Program P.

• If Pr[Xj = bj] > 0 then bj ≤ Re. This is also by the
constraint (P.b) of Program P.

We can then apply Lemma 3 on the subset of random vari-
ables {Xj : 1 ≤ j ≤ ω,Pr[Xj = bj] > 0}, and we get

Pr[αe > 4 ln 2n] ≤ exp(−2 ln 2n) =
1

4n2
,

which completes our proof.

Lemma 3. Suppose {Xi}ωi=1 are independent random vari-
ables, such that Xi (1 ≤ i ≤ ω) takes value 0 with probability
1 − pi (0 < pi < 1), and takes value vi with probability pi.
Define X :=

∑ω
i=1 Xi. Then for R ≥ 0, β ≥ 2e such that

vi ≤ R and E[X] ≤ R, we have Pr[X > βR] ≤ exp(−β
2
).

Proof. Let t > 0 be a parameter to be fixed. Then

Pr[X > βR] = Pr[tX > tβR]

= Pr[exp(tX) > exp(tβR)]

≤ exp(−tβR) · E[exp(tX)]

= exp(−tβR)
ω∏

i=1

E[exp(tXi)],

where the inequality is by the Markov’s inequality.
We analyze E[exp(tXi)]. By definition, we derive

E[exp(tXi)] = (1− pi) + pi exp(tvi)

= 1 + pi(exp(tvi)− 1)

≤ exp(pi(exp(tvi)− 1)),

where the last inequality is from the fact that 1+x ≤ exp(x)
for all real x. Then, we get

ω∏

i=1

E[exp(tXi)] ≤ exp(

ω∑

i=1

pi(exp(tvi)− 1)).

We pick t to satisfy exp(tvi) ≤ 1 + 1
2
tβvi, for all i.

We will show the existence and give the value of such a t
later. With this property of t, we have

ω∏

i=1

E[exp(tXi)] ≤ exp(

ω∑

i=1

1

2
tβpivi) ≤ exp(

1

2
tβR),

where the last inequality is by E[X] ≤ R.
Therefore, we get

Pr[X > βR] ≤ exp(−tβR+
1

2
tβR) = exp(t(−1

2
βR)).

We define t :=
ln β

2
R

. Recall that we require t to satisfy

the property that exp(tvi) ≤ 1 + 1
2
tβvi for all i. To verify

the property,

exp(tvi) = exp(
vi
R

ln
β

2
) = (

β

2
)
vi
R

≤ 1 +
β

2
· vi
R

≤ 1 +
1

2
tβvi,

where the second last inequality follows from the fact that
ax ≤ 1 + ax, for a ≥ 1, 0 ≤ x ≤ 1. (To verify the fact, we
let g(x) = ax − 1 − ax. Then g′(x) = ln a · ax − a, and we
know that g(x) takes the maximum when x = 0 or x = 1,
and therefore g(x) ≤ max{g(0), g(1)} = 0).
Substituting t, we have

Pr[X > βR] ≤ exp(−β

2
ln

β

2
) ≤ exp(−β

2
),

which completes our proof.

Therefore, the strategy returned by the rounding scheme
has completion time at most O(log n)OPTP, with high prob-
ability. Together with OPTP ≤ OPT, we immediately get
the desired approximation ratio.
3) Time Complexity of OneCoflow: Program P is not
convex, because of the constraints P.b and P.e. Hence, it is
non-trivial to find the optimal solution in polynomial time.

To resolve the issue, we propose a binary search based
approach. The main observation is that if t is fixed instead
of a variable, the constraints are all linear. This means that
we can solve a feasibility linear program to test whether a
specific t is feasible or not.

Hence, our algorithm for solving Program P is as follows.
First we binary search t. Then for a fixed t, we define bj =

vj
t

(note that bj is constant given t), and we solve the following
feasibility linear program FLP:

minimize 0 (FLP)

subject to

ω∑

j=1

bj
∑

p∈Pj

I(e ∈ p) · xj,p ≤ Re, e ∈ E, (FLP.a)

xj,p = 0, if ∃e ∈ p, bj > Re, (FLP.b)
∑

p∈Pj

xj,p = 1, 1 ≤ j ≤ ω, (FLP.c)

0 ≤ xj,p ≤ 1, p ∈ Pj , 1 ≤ j ≤ ω.
(FLP.d)

When the linear program is infeasible, we enlarge t; oth-
erwise, we search for smaller t. In the end, we will find the
nearly optimal t (we do not need the exact t since we are
seeking for approximation algorithms anyway), and the cor-
responding solution for Program P is constructed by solving
Program FLP with the binary search based approach.

Therefore, during solving Program P, we compute O(1)
Program FLPs with O(ωKC) number of variables, and
O(ωKC + n2) number of constraints. The number of feasi-
bility linear programs that we need to solve should typically
be a constant in reality. After we get the optimal solu-
tion, the main algorithm, i.e. Algorithm 1, runs in time
O(ωKC). In conclusion, our algorithm OneCoflow runs in
O(LP(O(ωKC), O(ωKC + n2))).
This ends the proof of Theorem 1.

Extension to General Networks In data center network-
s, the number of paths between any pair of nodes is bounded
byK = poly(n). So our algorithm OneCoflow is able to com-
pute a valid strategy for a coflow in polynomial time. But
the assumptionK = poly(n) may be not applicable for other
networks, for example, wireless networks with an arbitrary
number of nodes. In such a network, the number of paths
between any pair of nodes can be super polynomial, which
would make the algorithm fail to solve Program P in poly-
nomial time. Specifically, we consider the case when Pj for
(sj , tj) are defined as all the possible directed simple paths
from sj to tj using edges in some Ej ⊆ E. In this setting,
we have Theorem 2.

Theorem 2. For any coflow C := {(sj , tj , vj)}ωj=1 with
Pj defined to be all the (simple directed) paths from sj to tj
using edge set Ej ⊆ E, there exists an algorithm that returns
a valid strategy for C with completion time at most (4 ln 2n)
times the minimum completion time of C with probability at
least 3

4
, running in time O(LP(O(ω|E|), O(ω|E|))), where

LP(x, y) means the running time of solving a linear program
with x variables and y constraints.

Proof. The proof framework is similar to that for
OneCoflow. However, since the way we define the path set
changes, we have to modify the program a little. Specifically,
we use variables xj,e to denote whether edge e is chosen in
the j-th flow, instead of variables xj,p to denote the selection
of paths in Program P. The constraints of the program
are changed accordingly. We also adopt the binary search
based approach to solve the new program. After solving the
program optimally, we design a different rounding procedure
to get a valid routing. Finally, as in OneCoflow, we scale
down a factor of the bandwidth to make sure the strategy
is valid. The analysis of the approximation ratio is mostly
similar to that before, and the key ingredient is the use of
our measure concentration result (Lemma 3). Due to the
space, we omit the details here.

4. ONLINE MULTI-COFLOW ROUTING
AND SCHEDULING

In this section, we study online multiple coflow routing
and scheduling, where m coflows {Ci}mi=1 arrive at time
{Ti}mi=1

4. Without loss of generality, we assume T1 = 0. At

4We allow multiple coflows arrive at the same time, i.e., if
Ci and Ci+1 arrive at t simultaneously, we set Ti = Ti+1 = t.

Ti, it is required to give the coflow Ci := {(s(i)j , t
(i)
j , v

(i)
j)}ωi

j=1

a strategy Si := {(p(i)j , b
(i)
j (x))}ωi

j=1 for x ≥ Ti.
Our aim is to design an algorithm to allocate the network

resources through computing for each unfinished coflow a
valid strategy. The algorithm design targets at the follow-
ing properties: 1) performance guarantee: The algorithm is
competitive with a non-trivial ratio for the online problem;
2) practical for real application: we do not allow frequent
reroutings; specifically, recall that in our model, one coflow
(and therefore one flow) will be routed only once; and 3)
fairness: those coflows with a larger completion time will be
provided relatively more network resources.

4.1 Online Algorithm
We make use of OneCoflow, our algorithm for the single

coflow strategy, as a black box, and design a competitive al-
gorithm for the online multiple coflow routing and schedul-
ing problem. The main idea is that when a new coflow
arrives or a coflow completes its transmission, to compute
each existing coflow a valid strategy and to fully utilize the
link capacity, we reschedule each flow’s bandwidth by scaling
down its bandwidth computed by OneCoflow. The algorith-
m is called OMCoflow, as shown in Algorithm 2.

Algorithm 2: OMCoflow: Online Algorithm for Multi-
ple Coflow Routing and Scheduling

Input: {(Ci, Ti)}mi=1

Output: Valid strategies for {(Ci, Ti)}mi=1

1 while there is a new coflow coming or some existing
coflow being completed do

2 Suppose I is the set of indices of coflows that are
not completed at this point.

3 for i ∈ I do

4 Define αi :=
√
OPTi

∑
l∈I

√
OPTl

, where OPTi is the

optimal of Program P for coflow Ci,

5 Update Si := {(p(i)j , αib
(i)
j)}ωi

j=1, where

{(p(i)j , b
(i)
j)}ωi

j=1 is the solution computed by

OneCoflow (with inputs as Ci and {P (i)
j }ωi

j=1)

when Ci arrived.

6 Scale the bandwidths for all flows in {Si}i∈I by the
same factor that is the largest to make the strategy
still valid.

OMCoflow computes a valid strategy for each existing coflow
in the network including the newly arrived one. A new
coflow arriving or some coflow being completed would wake
up OMCoflow (Line 1). It calls OneCoflow for each coflow
Ci to compute a valid strategy when Ci arrives at the net-
work assuming that Ci monopolizes the network (i.e., the
case of single coflow routing and scheduling). The output

of OneCoflow for Ci, {(p(i)j , b
(i)
j)}ωi

j=1, is then stored to avoid
duplicated computations in the future. Note that the in-
terplay of concurrent coflows is likely to make this strategy
invalid, so we scale down each coflow’s bandwidth with a
factor (Line 4 and Line 5). The factor αi is special to each
coflow, and is computed with respect to the optimal of Pro-
gram P for all concurrent coflows. So the new scheduling
is a weighted combination of the single coflow scheduling,
and αi’s are the weights. In this way, obviously, each coflow
receives a valid strategy. In particular, for coflow Ci, we

base on the ρ-approximate optimal single coflow routing and
scheduling (by OneCoflow), and scale down the bandwidth
of the flows uniformly by αi. As we always make use of the
valid strategy output by OneCoflow (through only scale the
coflow bandwidth), OneCoflow is applied only for the new-
ly arrived coflow, and we will solve Program P only once
for each coflow. For the case when a coflow is completed,
we do not need to call OneCoflow. Moreover, after we re-
weight the scheduling, we scale all the flow bandwidths by
the same largest possible factor, to make use of the rest of
the bandwidth (Line 6).

4.2 Analysis
Preliminaries: When we say an algorithm for the problem
is ρ-competitive, we mean for all k (1 ≤ k ≤ m), the online
algorithm returns a valid strategy for each coflow in the set
{(Ci, Ti)}ki=1 that has a completion time at most ρ times its
minimum completion time under the offline setting. Offline
setting means the information of the posterior coflows is
known in advance (the knowledge of (Cj , Tj) for j > i).
Theorem 3 shows that OMCoflow has a provable compet-

itive guarantee. Although the analysis is not tight, experi-
ments in Sec. 5 show that our algorithm actually has superb
performance.

Theorem 3. Suppose the competitive ratio of OneCoflow
(Algorithm 1) is ρ. Then, OMCoflow (Algorithm 2) is mρ-
competitive for the online multiple coflow routing and schedul-
ing problem, running in time O(m)·TIMESIN, where TIMESIN

is the time complexity of OneCoflow.

Proof. Since the time complexity part is immediate, we
focus on the analysis of the competitive ratio.
Lower Bound of Offline Optimal Suppose OPT is the of-
fline minimum completion time for {(Ci, Ti)}mi=1. Let OPTi

be the optimal value of the Program P for coflow Ci. It is
immediate that each coflow Ci contributes to the total com-
pletion time with no less than its minimum completion time
when it monopolizes the network. Moreover, since OPTi is
a lower bound of the minimum completion time of coflow Ci

when it is the only coflow that is running, we conclude that
OPT ≥ ∑m

i=1 OPTi.
Upper Bound the Competitive Ratio Since we already
have the lower bound OPT ≥ ∑m

i=1 OPTi, we compare the
performance of our algorithm to

∑m
i=1 OPTi.

Lemma 4. ALG ≤ mρ
∑m

i=1 OPTi, where ALG denotes
the completion time of the scheduling given by Algorithm 2.

Proof. Consider the optimization problem for some sub-
set I of {1, 2, . . . ,m},

Minimize
∑

i∈I

OPTi

xi

subject to
∑

i∈I

xi ≤ 1,

where variables xi’s are non-negative. Applying the Cauchy-
Schwarz inequality,

∑

i∈I

OPT

xi
≥ (

∑

i∈I

OPTi

xi
) · (

∑

i∈I

xi) ≥ (
∑

i∈I

√
OPTi)

2.

Moreover, the minimizer is xi =
√
OPTi

∑
l∈I

√
OPTl

.

Thus, for each I in each iteration of the algorithm, the
factors αi’s (i ∈ I) are optimally picked with respect to I.

Define α
(m)
i :=

√
OPTi

∑m
l=1

√
OPTl

. Define ALGi to be the com-

pletion time of the single coflow scheduling returned by the
ρ-approximate algorithm for coflow Ci. We observe that for
any integer i ∈ I,

αi ≥
√
OPTi∑m

l=1

√
OPTl

= α
(m)
i .

Hence, the completion time Fi for each coflow Ci is at most

ALGi

α
(m)
i

≤ ρ
OPTi

α
(m)
i

≤ ρ
√
OPTi

m∑

l=1

√
OPTl.

Hence, we have

ALG ≤
m∑

i=1

ALGi

α
(m)
i

≤ ρ(

m∑

i=1

√
OPTi)

2 ≤ mρ ·
m∑

i=1

OPTi.

The last inequality is by the Cauchy-Schwarz inequality.

Therefore, our theorem is proved.

We can combine the results of Theorem 1 and Theorem 3 to
get the following corollary.

Corollary 1. OMCoflow is (4m ln 2n)-competitive with
high probability, where m is the number of coflows and n
is the number of nodes in the network.

4.3 Advantages of OMCoflow
OMCoflow computes a valid strategy for each unfinished

coflow with theoretical performance guarantees. Besides,
OMCoflow has the following significant merits.
No Frequent Rerouting: OMCoflow computes the routes
for each flow in a coflow only once when the coflow arrives at
the network. That is to say, each flow will transmit its data
exactly along one path, although the bandwidth assigned to
this path might change from time to time. Avoiding fre-
quent rerouting will make OMCoflow more efficient and more
implementable in practical applications.
Fairness: We observe that the weight factors αi are de-
fined to be proportional to

√
OPTi. This ensures that those

coflows with large completion time when they monopolize
the network will be given more bandwidth, and those coflows
with small completion time will be given relatively less band-
width. This shows that our algorithm inherently has the
guarantee of fairness. Moreover, as there is barely any sign
of waiting in any coflow, our algorithm also prevents starva-
tion permanently.
Work Conserving: Line 6 in Algorithm 2 corresponds to
a speed-up operation which scales up the flow bandwidths
with a factor to completely utilize the link capacity. This
illustrates the good property of work conservation of our
OMCoflow algorithm.

5. PERFORMANCE EVALUATION
We evaluate our proposed online algorithm OMCoflow by

large-scale simulations based on real-application data from
Facebook [1], which is also used by authors [11, 13]. We
develop a trace-driven simulator which compares OMCoflow

with the following three state-of-the-art schemes: 1) Base-
line: all the individual flows are routed by ECMP [21],

Table 2: Coflows categorized by length (Short and Long) and
width (Narrow and Wide) in our original Facebook trace.

Coflow Type SN LN SW LW

Length Short Long Short Long
Width Narrow Narrow Wide Wide

% of Coflows 59.51% 16.53% 11.79% 12.17%
% of Total Bytes 0.01% 0.11% 0.87% 99.01%

in which the bandwidths are assigned following the max-
min fairness; 2) Heuristic: routing and scheduling coflows
according to the minimum remaining time first (MRTF)
heuristic, as in RAPIER [28]; and 3) Scheduling-only:
scheduling coflows using the MRTF heuristic and routes all
the individual flows by ECMP, as in Varys [13]. Here we
highlight our key results:

• For both Facebook and Fat-tree topologies, OMCoflow
outperform the Baseline, Heuristic and Scheduling-only
schemes, by reducing the average (95th percentile) C-
CT by up to 76.7% (62.4%), 41.8% (11.7%) and 65.0%
(46.1%), respectively (Sec. 5.2.1).

• OMCoflow has much shorter average CCTs when ap-
plied to specific categories of coflows with different
widths and sizes (Sec. 5.2.1).

• OMCoflow runs much faster than Heuristic, the state-of-
the-art algorithm considering routing and scheduling
simultaneously (Sec. 5.2.2). It dramatically reduces
the execution time by up to 99.2%, which makes OM-

Coflow more practical in real applications.

• OMCoflow consistently outperforms the other schemes
over a wide range of values for different coflow parame-
ters, such as the number of coflows, the size, the width
and the intercoflow arrival intervals (Sec. 5.3).

5.1 Methodology
Data Trace Our workload is based on a Hive/MapReduce
trace that was collected on a 3000-machine 150-rack cluster
with 10:1 oversubscription ratio, which was also adopted in
[13]. The synthesized trace contains 526 coflows that are
scaled down to the rack-level with exact inter-arrival times.
Mappers in the same rack are combined into one rack-level
mapper, and so are the reducers. Communication patterns
at rack-level are captured accurately and the amounts of
data (e.g., the coflow size) being shuffled are rounded to
the nearest megabyte [1]. Since the original trace only has
the whole data size of a coflow shuffled to the reducers, we
uniformly sample the size for each flow within it.
Coflow A coflow is measured by 3 key parameters:1) width:
the total number of individual flows; 2) length: the size of
its largest flow it contains; and 3) size: the total amount of
data in megabytes. Similar to [13, 24], we divide non-zero
coflows into 4 categories as shown in Table 2. A coflow is W
(wide) if it involves more than 50 flows, and otherwise it is
N (narrow); and a coflow is L (long) if its length is greater
than 5MB, and otherwise it is S (short).
Simulator Existing packet-level simulators (e.g., ns-2) are
not suitable here due to their high communication overhead-
s. Similar to previous works (e.g., [4, 11, 13, 24, 28]), we
develop a trace-driven simulator with the embedded solver

 OMCoflow (AVG)
 OMCoflow (95th Percentile)
 Heuristic (AVG)
 Heuristic (95th Percentile)
 Scheduling-only (AVG)
 Scheduling-only (95th Percentile)

1 (SN) 2 (LN) 3 (SW) 4 (LW) 5 (ALL)
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

Coflow Types

(a) Facebook
 OMCoflow (AVG)
 OMCoflow (95th Percentile)
 Heuristic (AVG)
 Heuristic (95th Percentile)
 Scheduling-only (AVG)
 Scheduling-only (95th Percentile)

1 (SN) 2 (LN) 3 (SW) 4 (LW) 5 (ALL)
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

Coflow Types

(b) Fat-tree

Figure 1: Improvements in the average and 95th percentile
CCTs of OMCoflow, Heuristic and Scheduling-only compared
with Baseline in (a) Facebook topology and (b) Fat-tree
topology, respectively.

GUROBI [2] to solve the linear programming problem. Our
simulator runs on a machine with two Intel Xeon CPU E5-
2690 v2 3.00GHz with 32GB memory and 1TB hard drive.

We mainly choose the Facebook data center fabric [6, 17]
as our network topology, where there are 15 pods each with
10 racks and 4 fabric switches. In one pod, each rack is
connected to each of the 4 fabric switches. The capacity of
a link connecting fabric switches with racks is 1Gbps. Each
fabric switch is connected to different groups of 5 upper-
layer spine switches, so we have 4×5=20 spine switches in
total. The capacity of each link between a fabric and the
spine layer is 4Gbps. Moreover, we investigate a 10-ary Fat-
tree [3] fabric in our experiments as well. In this topology,
we fix the first 150 racks as the end points of the coflows.
The link capacity between the racks and edge switches is
set to 1Gbps, so are the links between the edges and the
aggregation layers. Links between the top two layers have a
capacity of 4Gbps.
Metrics We measure the improvement in the average CCT
when comparing two schemes. Take comparing Scheme X
with the Baseline as an example:

Improvement (%) =
average CCT(Baseline)− average CCT(X)

average CCT(Baseline)
.

We measure the CCTs at high percentile (the 95th per-
centile) similarly.

5.2 OMCoflow Performance

5.2.1 CCTs in Different Network Topologies
In this section, we evaluate the coflow completion times

(CCTs) of OMCoflow, Heuristic and Scheduling-only against
the Baseline in the Facebook topology and Fat-tree topology
respectively. We not only investigate the whole data trace in
[13] of totally 526 coflows, but also the subsets of coflows in
different categories defined in Table 2 based on the lengths
and widths of the coflows. Figure 1 illustrates our results.
Figure 1(a) shows that with the Facebook topology, when
we consider the whole data trace, OMCoflow, Heuristic and
Scheduling-only improve the average (95th percentile) CCT

1 (SN) 2 (LN) 3 (SW) 4 (LW) 5 (ALL)
0

20

40

60

80

100 99.2%96.8%

80.8%83.4%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

Coflow Types

 Total Runtime

74.2%

(a) Improvements in the
running time

1 (SN) 2 (LN) 3 (SW) 4 (LW)5 (ALL)
0

2

4

6

8

10

12

Av
g

C
on

cu
rre

nt
 C

of
lo

w
 N

um
be

r

Coflow Types

 OMcoflow
 Heuristic

(b) the average (maximum
and minimum) number of
concurrent coflows

Figure 2: Improvements in the runtime using OMCoflow

w.r.t. Heuristic in the Facebook topology.

by up to 76.7% (62.4%), 60.0% (57.4%) and 33.5% (30.2%),
respectively. That is to say, OMCoflow relatively improves
the average (95th percentile) CCT by 41.8%(11.7%) over
Heuristic and 65.0% (46.1%) over Scheduling-only. We can
also see that the performance of OMCoflow is steady for spe-
cial categories of coflows. Figure 1(b) shows a similar result
in the Fat-tree topology.

5.2.2 Running Time
We compare the time efficiency of OMCoflow with Heuris-

tic, the state-of-the-art heuristic scheme (such as RAPIER
in [28]) that also takes into account routing and scheduling
simultaneously. Here we use the Facebook topology. The
metric we consider is given as

Improvement (%) =
Runtime(Heuristic)− Runtime(OMCoflow)

Runtime(Heuristic)
.

In Figure 2(a), we can see that OMCoflow dramatically
outperforms Heuristic for all different coflow categories. For
the whole data trace, it reduces the running time by up to
99.2% (equivalently 135× faster). We analyze the reason as
follows. OMCoflow and Heuristic are both executed when a
new coflow arrives or an existing coflow completes transmis-
sion. Note that each of the LPs to be solved in Heuristic
or OMCoflow have the same numbers of variables and con-
straints (see Program (4) in [28] and Program FLP in Sec.
3), so the time complexity to solve an LP in both schemes is
the same.Next, we investigate the numbers of LPs that each
scheme need solve under the following two cases.

• When a new coflow arrives, Heuristic needs to solve
O(Δ2

m) LPs, which can reach O(m2) in the worst cases.
Here, Δm is the number of concurrent coflows in the
network [28] and m is the total number of coflows. In
contrast, OMCoflow only needs to solve O(1) LPs as
analyzed in Sec. 3.2.

• When an existing coflow completes transmission and
leaves, Heuristic still has to solve O(Δ2

m) LPs, while
OMCoflow need not solve any LP but only scale the flow
bandwidth. (Lines 4–6 in Algorithm 2).

We further investigate the number of concurrent coflows
when executing the schemes. Figure 2(b) illustrates that
OMCoflow has less concurrent coflows on average. For both
schemes, solving LPs accounts for most of the runtime.

Therefore, OMCoflow can be executed much faster than
Heuristic and is more practical to real applications.

30 60 80 100
0

20

40

60

80

100
Pe

rfo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

Coflow Number

 OMCoflow
 Heuristic
 Scheduling-only

(a)

10 20 50 100 200
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

Coflow Width

 OMCoflow
 Heuristic
 Scheduling-only

(b)

0.05 0.5 5 50 500
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

Coflow Size (GB)

 OMCoflow
 Heuristic
 Scheduling-only

(c)

0 50 500 1000 2000
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

Inter-Coflow Arrival Interval (ms)

 OMCoflow
 Heuristic
 Scheduling-only

(d)

Figure 3: The impact of parameters on the average CCTs of OMCoflow, Heuristic and Scheduling-only compared to Baseline.

5.3 Impact of Coflow Parameters
In this section, we study the impacts of key coflow pa-

rameters on the performance of OMCoflow, such as the to-
tal coflow number, the coflow width, the coflow size, and
the inter-coflow arrival interval. Unless otherwise specified,
we assume the Facebook data center topology. Generally,
in Figure 3, we can see that OMCoflow always outperforms
Baseline, Heuristic and Scheduling-only under different sce-
narios.

5.3.1 Coflow Number
To evaluate the impact of the coflow number on the per-

formance of the routing and scheduling schemes, we fix the
other parameters, i.e., setting the coflow width, the coflow
size and the mean inter-coflow arrival interval as 100, 500MB
and 100ms, respectively. We then inject different numbers of
coflows into the network, and calculate the improvement of
the average CCTs for OMCoflow, Heuristic, and Scheduling-
only compared with Baseline.

Figure 3(a) shows that the improvement in average CCT
increases with the growth of the coflow numbers using each
of the three schemes. The reason is that more coflows would
lead to a more severe competition for the network resources,
and then the efficient solutions will gain more benefits. OM-
Coflow can reduce the average CCT by up to 67.6% (see
the case of 100 coflows) when compared with the Baseline,
which outperforms the other two schemes.

5.3.2 Coflow Width
Recall that the coflow width is the number of flows within

it. In this experiment, we fix the coflow number, the size and
and the mean inter-coflow arrival interval as 100, 500MB
and 100ms, respectively, and then study the influence of the
coflow width to the average CCTs.

Figure 3(b) shows that the larger coflow width, the more
improvement in average CCT gained by each of the three
schemes. The reason is still that more data communications
lead to more severe competition for the network resources.
We can observe that OMCoflow always outperforms Heuristic
and Scheduling-only. OMCoflow can reduce the average CCT
by up to 70.7% compared to the Baseline, while Heuristic
and Scheduling-only can only reduce it by 62.5% and 36.3%.

5.3.3 Coflow Size
Here we fix the coflow number, the width and the mean

inter-coflow arrival interval to be 100, 100 and 100ms re-
spectively. In each experiment, we then send coflows with
the same size into the network.

For different coflow sizes, Figure 3(c) shows OMCoflow

can reduce the average CCT by up to 80.6% when com-
pared with the Baseline. When compared with Heuristic and
Scheduling-only, OMCoflow can reduce the time by 44.7%
and 67.6 %, respectively.

In addition, for all the three schemes, their improvemen-
t in the average CCTs increases with the growth of coflow
sizes, while the improvement of OMCoflow escalates more
dramatically than the other two. This is because under the
online setting, the larger coflow size leads to more severe col-
lisions among coflows. Compared with Heuristic, OMCoflow
can result in a much smaller number of concurrent coflows
in the network. Compared with Scheduling-only, OMCoflow
also conducts routing, which contributes to the relief of the
collisions. Therefore, the larger the coflow size is, the more
improvements OMCoflow gains.

5.3.4 Inter-Coflow Arrival Interval
For each of the experiments in this part, the mean inter-

coflow arrival interval is fixed to a value by modifying the
intervals in the original data trace. The other parameters are
fixed as the previous sections. We investigate the intervals
starting from 0, which means all coflows arrive at the same
time (the same as the offline model).

The results are shown in Figure 3(d). We can see that
OMCoflow always outperforms Heuristic and Scheduling-only
when the intervals are not extremely large. OMCoflow can re-
duce the average CCT by up to 69.0% when compared with
Baseline. Moreover, we can observe when the interval be-
comes extremely large, the improvements of the schemes will
decrease significantly, i.e., when the interval is 2s, little im-
provement can be gained. The reason is that if the interval is
too large, most coflows will finish transmission during the in-
terval and there will be little interaction among the coflows.
In this case, the coflow routing will contribute more than
the coflow scheduling to minimize the CCTs. Since both
Heuristic and OMCoflow consider coflow routing, they have
a better perfomance than Scheduling-only. Moreover, we
can see that OMCoflow performs even better than Heuristic,
which illustrates the advantage of our single coflow routing
and scheduling algorithm, OneCoflow, when compared to the
single coflow algorithm in RAPIER.

6. CONCLUSION
This paper studies the combined problem of routing and

scheduling of coflows. Coflow is a relatively new concept
which was proposed to bridge the semantic gap between the
application-level requirements and the network-level metric-

s. For the single coflow routing and scheduling, we propose
OneCoflow, a randomized algorithm to minimize the coflow
completion time (CCT), which has a good approximation
ratio with high probability. We further derive an online al-
gorithm, called OMCoflow, to tackle the multiple coflow rout-
ing and scheduling problem. Our theoretical analysis shows
that our algorithm has a good competitive ratio in minimiz-
ing the average CCT of the coflows. Extensive simulations
based on a real-world data trace from Facebook indicated
that OMCoflow outperforms the state-of-the-art multi-coflow
routing and scheduling approaches in minimizing the aver-
age CCT and reducing the execution time. Consequently,
OMCoflow is more suitable for practical applications. Exist-
ing works on coflow-aware routing and scheduling all assume
that the flows in a coflow arrive at the network simultaneous-
ly, or equivalently, they make the coflow start after all of its
flows have arrived. However, in real scenarios, flows within a
coflow come more naturally to the network at different time
slots, and the ones arriving earlier should not need to wait
for the other flows. We will take this into account in our
future work. OMCoflow is actually a randomized approach.
Therefore, it is also meaningful and challenging to derive
a deterministic online multi-coflow scheduling and routing
scheme with good theoretical performance guarantees.

Acknowledgments
This work is supported in part by NSFC Grants 61502201,
61472252, 61373125, China 973 project (2014CB340303),
NSF-Guangdong Grant 2014A030310172, and Hong Kong
RGC CRF Grant C7036-15G.

7. REFERENCES
[1] Facebook Hive/MapReduce Trace.

https://github.com/coflow/coflow-benchmark.

[2] GUROBI. http://www.gurobi.com/.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
Proc. of ACM SIGCOMM, 2008.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In Proc. of
USENIX NSDI, 2010.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti,
N. McKeown, B. Prabhakar, and S. Shenker. pfabric:
Minimal Near-Optimal Datacenter Transport. In
Proc. of ACM SIGCOMM, 2013.

[6] A. Andreyev. Introducing Data Center Fabric, the
Next-Generation Facebook Data Center Network.
https://code.facebook.com/posts/360346274145943.

[7] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. Information-Agnostic Flow Scheduling for
Commodity Data Centers. In USENIX NSDI, 2015.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang.
MicroTE: Fine Grained Traffic Engineering for Data
Centers. In Proc. of ACM CoNEXT, 2011.

[9] L. Chen, W. Cui, B. Li, and B. Li. Optimizing Coflow
Completion Times with Utility Max-Min Fairness. In
Proc. of IEEE INFOCOM, 2016.

[10] M. Chowdhury and I. Stoica. Coflow: A Networking
Abstraction for Cluster Applications. In Proc. of ACM
HotNets, 2012.

[11] M. Chowdhury and I. Stoica. Efficient Coflow
Scheduling without Prior Knowledge. In Proc. of
ACM SIGCOMM, 2015.

[12] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing Data Transfers in Computer
Clusters with Orchestra. In Proc. of ACM
SIGCOMM, 2011.

[13] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
Coflow Scheduling with Varys. In Proc. of ACM
SIGCOMM, 2014.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM, 51(1):107–113, 2008.

[15] F. R. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized Task-Aware Scheduling
for Data Center Networks. In Proc. of ACM
SIGCOMM, 2014.

[16] S. Even, A. Itai, and A. Shamir. On the Complexity of
Time Table and Multi-Commodity Flow Problems. In
Proc. of IEEE FOCS, 1975.

[17] N. Farrington and A. Andreyev. Facebook’s Data
Center Network Architecture. In Proc. of IEEE
Optical Interconnects, 2013.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. In Proc. of ACM SIGCOMM, 2009.

[19] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and
D. Towsley. Multi-Path TCP: A Joint Congestion
Control and Routing Scheme to Eploit Path Diversity
in the Internet. IEEE/ACM Transactions on
Networking, 14(6):1260–1271, 2006.

[20] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing
Flows Quickly with Preemptive Scheduling. In
Proc. of ACM SIGCOMM, 2012.

[21] C. E. Hopps. Analysis of an Equal-Cost Multi-Path
Algorithm. In RFC 2992, 2000.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks. In ACM Eurosys, 2007.

[23] S. Luo, H. Yu, Y. Zhao, B. Wu, S. Wang, and L. Li.
Minimizing average coflow completion time with
decentralized scheduling. In Proc. of IEEE ICC, 2015.

[24] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the Total
Weighted Completion Time of Coflows in Datacenter
Networks. In Proc. of ACM SPAA, 2015.

[25] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better Never Than Late: Meeting
Deadlines in Datacenter Networks. In Proc. of ACM
SIGCOMM, 2011.

[26] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In USENIX HotCloud, 2010.

[27] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury,
and Y. Geng. CODA: Toward Automatically
Identifying and Scheduling Coflows in the Dark. In
Proc. of ACM SIGCOMM, 2016.

[28] Y. Zhao, K. Chen, W. Bai, C. Tian, Y. Geng,
Y. Zhang, D. Li, and S. Wang. RAPIER: Integrating
Routing and Scheduling for Coflow-Aware Data
Center Networks. In IEEE INFOCOM, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

